Journal of Materials Science

, Volume 46, Issue 18, pp 6000–6006 | Cite as

Simple synthesis of nano-sized refractory metal carbides by combustion process

  • Hyung Il WonEmail author
  • Nersisyan Hayk
  • Chang Whan Won
  • Hyuk Hee Lee


Combustion reactions of transition metal oxides (WO3, MoO3, Ta2O5, Nb2O5, ZrO2, and TiO2), magnesium, carbon, and sodium fluoride produce a range of nanostructured transition metal carbides (W2C, Mo2C, TaC, NbC, ZrC, and TiC) with low amounts of free carbon. Sodium fluoride improves unfavorable combustion regimes and facilitates the carburization of metal carbides. The average particle size of carbides prepared in this study was below 100 nm in pure phase. The carbides were characterized by X-ray diffraction, scanning electron microscopy, specific surface area analysis, and carbon analysis.


Carbide Carburization Combustion Temperature Combustion Synthesis Combustion Reaction 


  1. 1.
    Storms EK (1967) The refractory carbides. Academic Press, New YorkGoogle Scholar
  2. 2.
    Toth LE (1971) Transition metal carbides and nitrides. Academic Press, New YorkGoogle Scholar
  3. 3.
    Hyeon T, Fang M, Suslick KS (1996) J Am Chem Soc 118:5492CrossRefGoogle Scholar
  4. 4.
    Izhar S, Yoshida M, Nagai M (2009) Electrochim Acta 54:1255CrossRefGoogle Scholar
  5. 5.
    Katharine P, Jun L, Robert S, Holly NS, Zhang J, Judith KS et al (2008) Solid State Sci 10:1499CrossRefGoogle Scholar
  6. 6.
    Fang ZZ, Wang X, Ryu T, Hwang KS, Sohn HY (2009) Int J Refract Met Hard Mater 27:288CrossRefGoogle Scholar
  7. 7.
    Carroll DF (1999) Int J Refract Met Hard Mater 17:123CrossRefGoogle Scholar
  8. 8.
    Wang HM, Wang XH, Zhang MH, Du XY, Li W, Tao KY (2007) Chem Mater 19:1801CrossRefGoogle Scholar
  9. 9.
    Hanif A, Xiao T, York APE, Sloan J (2002) Chem Mater 14:1009CrossRefGoogle Scholar
  10. 10.
    Nartowski AM, Parkin IP, Mackenzieb M, Craven AJ (2001) J Mater Chem 11:3116CrossRefGoogle Scholar
  11. 11.
    Fecht HJ (1992) Nanostruct Mater 1(2):125CrossRefGoogle Scholar
  12. 12.
    Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Metall Mater Trans A 21(9):2333CrossRefGoogle Scholar
  13. 13.
    Porat R, Berger S, Rosen A (1996) Mater Sci Forum 225–227(Pt 1):629CrossRefGoogle Scholar
  14. 14.
    Seegopaul P, Gao L (2003) US pat 6 524 366Google Scholar
  15. 15.
    Zhang ZY, Wahlberg S, Wang MS, Muhammed M (1999) Nanostruct Mater 12(1–4):163CrossRefGoogle Scholar
  16. 16.
    Swihart MT (2003) Curr Opin Colloid Interface Sci 8(1):127CrossRefGoogle Scholar
  17. 17.
    Kim JC, Kim BK (2004) Scr Mater 80:969CrossRefGoogle Scholar
  18. 18.
    Fukumasa O, Fujiwara T (2003) Thin Solid Films 435:33CrossRefGoogle Scholar
  19. 19.
    Tong LR, Reddy RG (2005) Scr Mater 52:1253CrossRefGoogle Scholar
  20. 20.
    Alexander GM (2004) J Mater Chem 14:1779CrossRefGoogle Scholar
  21. 21.
    Won HI, Nersisyan HH, Won CW (2008) J Mater Res 23:2393CrossRefGoogle Scholar
  22. 22.
    Nersisyan HH, Lee JH, Won CW (2003) Mater Res Bull 38:1135CrossRefGoogle Scholar
  23. 23.
    Nersisyan HH, Lee JH, Won CW (2002) J Mater Res 17:2859CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hyung Il Won
    • 1
    Email author
  • Nersisyan Hayk
    • 1
  • Chang Whan Won
    • 1
  • Hyuk Hee Lee
    • 2
  1. 1.Rapidly Solidified Materials Research Center (RASOM)Chungnam National UniversityDaejeonKorea
  2. 2.Korea Research Institute of Chemical TechnologyDaejeonSouth Korea

Personalised recommendations