Advertisement

Journal of Materials Science

, Volume 46, Issue 18, pp 5991–5999 | Cite as

Shock behaviour of a phenolic resin

  • David C. WoodEmail author
  • Paul J. Hazell
  • Gareth J. Appleby-Thomas
  • Nick R. Barnes
Article

Abstract

Phenolic resins are used in many aspects of everyday life, e.g. as the matrix material for carbon fibre laminates used in the aerospace industry. Consequently, detailed knowledge of this material, especially while under shock loading, is extremely useful for the design of components that could be subjected to impact during their lifespan. The shock Hugoniot equations of state for phenolic resin (Durite SC-1008), with initial density of 1.18 g cm−3 have been determined using the plate-impact technique with in situ manganin stress gauges. The Hugoniot equation in the shock velocity–particle velocity plane was found to be non-linear in nature with the following equation: US = 2.14 + 3.79up − 1.68u p 2 . Further, the Hugoniot in the pressure–volume plane was observed to largely follow the hydrostatic curve. Lateral gauge measurements were also obtained. An ANSYS AutodynTM 2D model was used to investigate the lateral stress behaviour of the SC-1008. A comparison of the Hugoniot elastic limit calculated from the shear strength and measured sound speeds gave reasonable agreement with a value of 0.66 ± 0.35 GPa obtained.

Keywords

Lateral Stress Shock Velocity Manganin Flyer Plate Hugoniot Elastic Limit 

Notes

Acknowledgements

The authors would like to acknowledge the support of the Institute of Shock Physics and AWE as well as Lockheed-Martin Insys for supplying the samples used for experimentation. We also wish to thank Mr. Andrew Roberts for technical help with the experiments. British Crown Copyright MOD/2011.

References

  1. 1.
    Cowie JMG (1991) Polymers: chemistry and physics of modern materials. Blackie, Glasgow, p 17Google Scholar
  2. 2.
    Burrell RH, Barnes NK, Keightley PT, Millett JCF, Bourne NK (2009) In: Americian Physical Society, 16th APS conference, poster presentationGoogle Scholar
  3. 3.
    Fujiwara S (1992) In: Sawaoka AB (ed) Shock compression technology and material science. KTK Scientific Publisher, Tokyo, p 7Google Scholar
  4. 4.
    Boustie M, Berthe L, de Resseguier T, Arrigoni M (2008) In: 1st International symposium on laser ultrasonics: science, technology and applicationsGoogle Scholar
  5. 5.
    Bourne NK (2003) Meas Sci Technol 14:273CrossRefGoogle Scholar
  6. 6.
    Meyers MA (1994) Dynamic behavior of materials. Wiley-Interscience Publication, New York, p 116Google Scholar
  7. 7.
    Barker LM, Hollenbach RE (1970) J Appl Phys 41:4208CrossRefGoogle Scholar
  8. 8.
    Carter WJ, Marsh SP (1995) Hugoniot equation of state of polymers. Report LA-13006-MS. Los Alamos National Laboratory, Los AlamosGoogle Scholar
  9. 9.
    Porter D, Gould PJ (2009) Int J Solids Struct 46:1981Google Scholar
  10. 10.
    Munson DE, May RP (1972) J Appl Phys 43:962CrossRefGoogle Scholar
  11. 11.
    Hazell PJ, Stennett C, Cooper G (2008) Polym Comp 29:1106Google Scholar
  12. 12.
    Appleby-Thomas G, Hazell P, Stennett C (2009) J Mater Sci 44:6187. doi: https://doi.org/10.1007/s10853-009-3859-z CrossRefGoogle Scholar
  13. 13.
    Millett JCF, Bourne NK, Deas D (2005) J Phys D 38:930CrossRefGoogle Scholar
  14. 14.
    Marsh SP (1980) LASL shock hugoniot data. University of California Press, CaliforniaGoogle Scholar
  15. 15.
    Stennett C, Cooper GA, Hazell PJ, Appleby-Thomas GJ (2009) In: Proceedings of the American Physical Society Topical Group on shock compression of condensed matter, 2009, American Institute of Physics, Melville, p 267Google Scholar
  16. 16.
    Volger TJ, Chhabildasa LC (2006) Int J Imp Eng 33:812CrossRefGoogle Scholar
  17. 17.
    Rosenberg Z, Yaziv D, Partom Y (1980) J Appl Phys 51:3702CrossRefGoogle Scholar
  18. 18.
    Rosenberg Z, Brar NS (1995) J Appl Phys 77:1443CrossRefGoogle Scholar
  19. 19.
    Rosenberg Z, Partom Y (1985) Lateral stress measurement in shock-loaded targets with transverse piezoresistance gauges. J Appl Phys 58:3072CrossRefGoogle Scholar
  20. 20.
    Millett JCF, Bourne NK, Rosenberg Z (1996) J Phys D 29:2466CrossRefGoogle Scholar
  21. 21.
    Van Den Berg P, De Borst R, Hutink H (1996) J Numer Anal Methods Geomech 20:865Google Scholar
  22. 22.
    Appleby-Thomas GJ, Hazell PJ, Stennett C, Cooper G, Cleave R (2009) In: DYMAT 2009, 9th International conference on the mechanical and physical behaviour of materials under dynamic loading, vol 2, p 1081Google Scholar
  23. 23.
    Millett J, Bourne N (2006) J Mater Sci 41:1683. doi: 10.1007/s10853-006-3951-6CrossRefGoogle Scholar
  24. 24.
    Millett JCF, Bourne NK (2004) J Phys D Appl Phys 37:2901CrossRefGoogle Scholar
  25. 25.
    Park SW, Xia Q, Zhou M (2001) Int J Imp Eng 25:887CrossRefGoogle Scholar
  26. 26.
    Tham CY (2005) Finite Elem Anal Des 41:1401CrossRefGoogle Scholar
  27. 27.
    Ma GW, Hao H, Zhou YX (1998) Comp Geotech 22:283Google Scholar
  28. 28.
    Winter RE, Harris EJ (2003) J Phys D 41:035503CrossRefGoogle Scholar
  29. 29.
    Winter RE, Owen GD, Harris EJ (2008) J Phys D 41:202006CrossRefGoogle Scholar
  30. 30.
    Appleby-Thomas GJ, Hazell PJ, Wilgeroth JM, Wood DC (2010) J Appl Phys 108:033524CrossRefGoogle Scholar
  31. 31.
    Rosenberg Z, Partom Y (1994) J Appl Phys 76:1935Google Scholar
  32. 32.
    Millett JCF, Bourne NK, Barnes NK (2002) J Appl Phys 92:6590CrossRefGoogle Scholar
  33. 33.
    Bourne NK, Millett JCF, Goveas SG (2007) J Phys D 40:5714CrossRefGoogle Scholar
  34. 34.
    Millett JCF, Bourne NK, Gray III GT, Cooper G (2002) In: Shock compression of condensed matter 2001, 12th APS topical conference, American Institute of Physics, Melville, p 131Google Scholar
  35. 35.
    Millett JCF, Bourne NK, Gray III GT (2004) J Phys D 37:942CrossRefGoogle Scholar
  36. 36.
    Pickup IM, Millett JCF, Bourne NK (2004) In: Shock compression of condensed matter 2003, proceedings of the conference of the American Physical Society Topical Group, American Institute of Physics, Melville, p 751Google Scholar
  37. 37.
    Ragford DD (2005) J Appl Phys 98:063504CrossRefGoogle Scholar
  38. 38.
    Appleby-Thomas GJ, Hazell PJ (2010) J Appl Phys 107:123508CrossRefGoogle Scholar
  39. 39.
    Bourne NK, Millett JCF (2003) Proc R Soc London Ser A 459:597CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David C. Wood
    • 1
    Email author
  • Paul J. Hazell
    • 1
  • Gareth J. Appleby-Thomas
    • 1
  • Nick R. Barnes
    • 2
  1. 1.Cranfield University, Cranfield Defence and SecurityShrivenham, SwindonUK
  2. 2.AWEAldermaston, Reading, BerkshireUK

Personalised recommendations