Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7184–7190 | Cite as

Model calculation of the effectiveness of Tb3+ containing glass as a wavelength converter in thin film solar cells

  • M. Sendova-VassilevaEmail author
Size Dependent Effects

Abstract

Wavelength converters have been proposed as one of the ways to achieve higher efficiency in third generation solar cells. The idea is to shift the wavelength of the light absorbed by the solar cell to the spectral region where the device is most efficient. Higher energy photons are often absorbed unproductively near the front contact of the solar cells. By the application of photoluminescent materials these photons are transformed into longer wavelength ones, which contribute more effectively to the generated photocurrent. In this study the improvement that a wavelength converter containing Tb3+ ions can produce on the efficiency of a thin film silicon single junction solar cell under AM 1.5 solar radiation is assessed by model calculations. The absorption and emission of a specified number of Tb3+ ions in a fluoride glass layer or plate is calculated on the basis of literature data. It is presumed that such a plate is placed in front of the solar cell and modifies the solar spectrum falling on the cell. This modified solar spectrum is used to calculate the efficiency of two model solar cells, an amorphous silicon and a microcrystalline silicon one, using the program Afors-Het 2.2. The amount of Tb3+ ions per unit area in the wavelength converter layer is varied. In the best case the efficiency of the a-Si:H solar cell improves by 1% and that of the microcrystalline silicon cell by 2.3%, in comparison to that calculated with the unmodified AM 1.5 spectrum.

Keywords

Solar Cell Solar Spectrum Thin Film Solar Cell Wavelength Converter Fluoride Glass 

References

  1. 1.
    Klampaftis E, Ross D, McIntosh KR, Richards BS (2009) Sol Energy Mater Sol Cells 93:1182CrossRefGoogle Scholar
  2. 2.
    van Sark WGJHM, Meijerink A, Schropp REI, van Roosmalen JAM, Lysen EH (2005) Sol Energy Mater Sol Cells 87:395CrossRefGoogle Scholar
  3. 3.
    Nakata R, Hashimoto N, Kawano K (1996) Jpn J Appl Phys 35:L90CrossRefGoogle Scholar
  4. 4.
    Le Donne A, Acciarri M, Binetti S, Marchionna S, Narducci D, Rotta D (2008) In: Proceedings of the 23rd European photovoltaic solar energy conference, Valencia, Spain, pp 269–271Google Scholar
  5. 5.
    Fukuda T, Kato S, Kin E, Okaniwa K, Morikawa H, Honda Z, Kamata N (2009) Opt Mater 32:22CrossRefGoogle Scholar
  6. 6.
    Hong B-C, Kawano K (2003) Sol Energy Mater Sol Cells 80:417CrossRefGoogle Scholar
  7. 7.
    Kawano K, Hong BC, Sakamoto K, Tsuboi T, Seo HJ (2009) Opt Mater 31:1353CrossRefGoogle Scholar
  8. 8.
    Rowan B, Richards BS, Robertson N, Jones A, Richardson P, Moudam O (2008) In: Proceedings of the 23rd European photovoltaic solar energy conference, Valencia, Spain, pp 700–703Google Scholar
  9. 9.
    He X-H, Lian N, Sun J-H, Guan M-Y (2009) J Mater Sci 44:4763. doi: https://doi.org/10.1007/s10853-009-3668-4 CrossRefGoogle Scholar
  10. 10.
    Sendova-Vassileva M, Nikolaeva M, Angelov O, Vuchkov A, Dimova-Malinovska D, Pivin JC (2002) In: Marshall JM, Dimova-Malinovska D (eds) Photovoltaic and photoactive materials—properties, technology and applications, vol 80. Proc. NATO Advanced Study Institute, NATO Science Series II. Mathematics, Physics and Chemistry, Kluwer, DordrechtGoogle Scholar
  11. 11.
    Stangl R, Kriegel M, Schmidt M (2006) In: Proceedings of WCPEC-4, 4th world conference on photovoltaic energy conversion, Hawaii, USA, May 2006Google Scholar
  12. 12.
    AFORS-HET: numerical simulation of solar cells and measurements. https://doi.org/www.helmholtz-berlin.de/forschung/enma/si-pv/projekte/asicsi/afors-het/index_en.html. Accessed 12 Dec 2010
  13. 13.
    Judd BR (1962) Phys Rev 127:750CrossRefGoogle Scholar
  14. 14.
    Ofelt GS (1962) J Chem Phys 37:511CrossRefGoogle Scholar
  15. 15.
    Caspary R, Unrau UB (1998) In: Hewak D (ed) Spectroscopy of holmium-doped halide glass, properties, processing and applications of glass and rare earth-doped glasses for optical fibres. EMIS Group. Institution of Electrical Engineers. INSPEC, LondonGoogle Scholar
  16. 16.
    Carnall WT, Fields PR, Rajnak K (1968) J Chem Phys 49:4447CrossRefGoogle Scholar
  17. 17.
    Amaranath G, Buddhudu S, Bryant FJ (1990) J Non-Cryst Solids 122:66CrossRefGoogle Scholar
  18. 18.
    Kaminskii AA (1996) Crystalline lasers: physical properties and operating schemes. CRC Press, Boca RatonGoogle Scholar
  19. 19.
    Kam CH, Buddhudu S (2007) Phys B 337:237CrossRefGoogle Scholar
  20. 20.
    Jia PY, Lin J, Yu M (2007) J Lumin 122–123:134CrossRefGoogle Scholar
  21. 21.
    Hayakawa T, Kamata N, Yamada K (1996) J Lumin 68:179CrossRefGoogle Scholar
  22. 22.
    Nath M, Roca i Cabarrocas P, Johnson EV, Abramov A, Chatterjee P (2008) Thin Solid Films 516:6974CrossRefGoogle Scholar
  23. 23.
    Baumgartner K, Ahrens B, Angelov O, Sendova-Vassileva M, Dimova-Malinovska D, Holländer B, Schweizer S, Carius R (2010) In: Proceedings of 25th European photovoltaic solar energy conference and exhibition, Valncia, Sept 2010, pp 245–250Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Central Laboratory of Solar Energy and New Energy SourcesBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations