Journal of Materials Science

, Volume 46, Issue 18, pp 5948–5958 | Cite as

Optimizing the heat sealing parameters of multilayers polymeric films

  • E. PlanesEmail author
  • S. Marouani
  • L. Flandin


Polymer–metal multilayers have been widely used for decades in packaging industry, and more recently for vacuum insulation panels for building application. In both cases, the seal zone could represent a weak area for mechanical and barrier properties. The aim of this report is to investigate the heat sealing properties of multilayers composed of one polyethylene layer and one or three polyethylene terephthalate layers coated with aluminum. The quality of seal was quantified by peeling test and the failure mechanisms. In order to optimize the set of heat sealing parameters, a series of mechanical and morphological relevant parameters were measured and compared to the failure modes. A comparison between the sole sealant film and multilayers was performed in terms of range of optimal heat sealing parameters and mechanical behavior of seals. Although they present a much narrower range of optimal properties, the multilayers films show a strong advantage over the single films.


Failure Mode Dwell Time LDPE Peel Test Sealant Material 



It is a pleasure to acknowledge the BARISOL Prebat Project financed by ANR (French National Research Agency) and overviewed by ADEME (French Agency for Environment and Energy Management). We specially thank all industrial partners of this project: EDF (B. Yrieix, E. Pons), CSTB (C. Pompeo, G. Garnier), and REXOR (P. Rousset, V. Robin). We also thank G. Garnier for helpful discussions and T. Dahmani and S. Marouani for technical support.


  1. 1.
    Brunner S, Gasser Ph, Simmler H, Wakili KGhazi (2006) Surf Coat Technol 200(20–21):5908CrossRefGoogle Scholar
  2. 2.
    Garnier Geraldine, Brechet Yves, Flandin Lionel (2009) J Mater Sci 44(17):4692. doi: CrossRefGoogle Scholar
  3. 3.
    Garnier G, Chehab B, Yrieix B, Brechet Y, Flandin L (2009) J Mater Sci 44(20):5537. doi: CrossRefGoogle Scholar
  4. 4.
    Garnier G, Yrieix B, Brechet Y, Flandin L (2010) J Appl Polym Sci 115(5):3110CrossRefGoogle Scholar
  5. 5.
    Meka P, Stehling FC (1994) J Appl Polym Sci 51(1):89CrossRefGoogle Scholar
  6. 6.
    Minick J, Moet A, Hiltner A, Baer E, Chum SP (1995) J Appl Polym Sci 58(8):1371CrossRefGoogle Scholar
  7. 7.
    Mueller C, Capaccio G, Hiltner A, Baer E (1998) J Appl Polym Sci 70(10):2021CrossRefGoogle Scholar
  8. 8.
    Poisson C, Hervais V, Lacrampe MF, Krawczak P (2006) J Appl Polym Sci 101(1):118CrossRefGoogle Scholar
  9. 9.
    Poisson C, Hervais V, Lacrampe MF, Krawczak P (2006) J Appl Polym Sci 99(3):974CrossRefGoogle Scholar
  10. 10.
    Qureshi NZ, Rogunova M, Stepanov EV, Capaccio G, Hiltner A, Baer E (2001) Macromolecules 34(9):3007CrossRefGoogle Scholar
  11. 11.
    Qureshi NZ, Stepanov EV, Capaccio G, Hiltner A, Baer E (2001) Macromolecules 34(5):1358CrossRefGoogle Scholar
  12. 12.
    Stehling FC, Meka P (1994) J Appl Polym Sci 51(1):105CrossRefGoogle Scholar
  13. 13.
    van Malsen J, Tenpierik MJ, Looman RHJ, Cauberg JJM (2008) J Plast Film Sheet 24(1):35CrossRefGoogle Scholar
  14. 14.
    Yuan CS, Hassan A, Ghazali MIH, Ismail AF (2007) J Appl Polym Sci 104(6):3736CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.LEPMI, UMR 5279, CNRS, Grenoble INPUniversité de Savoie—Université J. Fourier, Bât IUT, Campus Savoie TechnolacLe Bourget du Lac CedexFrance

Personalised recommendations