Journal of Materials Science

, Volume 46, Issue 18, pp 5925–5930 | Cite as

Fabrication of superhydrophobic surfaces on aluminum substrates using NaNO3 electrolytes

  • Wenji XuEmail author
  • Jinlong Song
  • Jing Sun
  • Qingle Dou
  • Xujuan Fan


A superhydrophobic surface with a water contact angle of 166.0° and a tilting angle of 1.5° was fabricated on an aluminum substrate by electrochemical machining using neutral NaNO3 electrolytes, followed by fluorination. The fabrication process is based on the fact that the grain boundaries and dislocations on aluminum are anodic dissolved before the grain itself by an applied electric field. Using scanning electron microscopy to analyze surface morphology, micrometer scale caves, and protrusions were found on the surface, with numerous nanometer mastoids contained in the protrusions. These binary micro-nano rough structures, which are similar to the micro-structures of a lotus leaf surface, play an important role in achieving superhydrophobicity. The effects of processing time, processing current, and electrolyte concentration on superhydrophobicity were also examined. The results show that electrochemical machining does not require rigid processing parameters, uses a simple device, and is highly efficient and environmental friendly. The optimum processing conditions are a processing time of 60 min, a processing current of 250 mA, and an electrolyte of 0.15 mol/L.


Contact Angle Tilting Angle Water Contact Angle Aluminum Substrate Aluminum Surface 



The authors thank for the financial support from the National Science Foundation of China (No. 90923022).


  1. 1.
    Barthlott W, Neinhuis C (1997) Planta 202:1CrossRefGoogle Scholar
  2. 2.
    Gao XF, Jiang L (2004) Nature 432:36CrossRefGoogle Scholar
  3. 3.
    Wang H, Tang LM, Wu XM, Dai WT, Qiu YP (2007) Appl Surf Sci 253:8818CrossRefGoogle Scholar
  4. 4.
    Wagner T, Neinhuis C, Barthlott W (1996) Acta Zool 77:213CrossRefGoogle Scholar
  5. 5.
    Furstner R, Barthlott W, Neinhuis C, Walzel P (2005) Langmuir 21:956CrossRefGoogle Scholar
  6. 6.
    Lee HJ (2009) J Mater Sci 44:4645. doi: CrossRefGoogle Scholar
  7. 7.
    Hayn RA, Owens JR, Boyer SA (2011) J Mater Sci 46:2503. doi: CrossRefGoogle Scholar
  8. 8.
    Mchale G, Shirtcliffe NJ, Evans CR, Newton MI (2009) Appl Phys Lett 94:064104CrossRefGoogle Scholar
  9. 9.
    Watanabe K, Yanuar, Udagawa H (1999) J Fluid Mech 381:225CrossRefGoogle Scholar
  10. 10.
    Shi F, Niu J, Liu JL, Liu F, Wang ZQ, Feng XQ, Zhang X (2007) Adv Mater 19:2257CrossRefGoogle Scholar
  11. 11.
    Liu T, Yin YS, Chen SG, Chang XT, Cheng S (2007) Electrochim Acta 52:3709CrossRefGoogle Scholar
  12. 12.
    Yin YS, Liu T, Chen SG, Liu T, Cheng S (2008) Appl Surf Sci 255:2978CrossRefGoogle Scholar
  13. 13.
    Kulinich SA, Farzaneh M (2009) Appl Surf Sci 255:8153CrossRefGoogle Scholar
  14. 14.
    Yin L, Xia Q, Xue J, Yang SQ, Wang QJ, Chen QM (2010) Appl Surf Sci 256:6764CrossRefGoogle Scholar
  15. 15.
    Cao LL, Jones AK, Sikka VK, Wu JZ, Gao D (2009) Langmuir 25:12444CrossRefGoogle Scholar
  16. 16.
    Tourkine P, Merrer ML, Quere D (2009) Langmuir 25:7214CrossRefGoogle Scholar
  17. 17.
    Suzuki S, Nakajima A, Yoshida N, Sakai M, Hashimoto A, Kameshima Y, Okada Y (2007) Chem Phys Lett 445:37CrossRefGoogle Scholar
  18. 18.
    Wang H, Tang LM, Wu XM, Dai WT, Qiu YP (2007) Appl Surf Sci 253:8818CrossRefGoogle Scholar
  19. 19.
    Ohkubo YJ, Tsuji I, Onishi S (2010) J Mater Sci 45:4963. doi: CrossRefGoogle Scholar
  20. 20.
    Shirtcliffe NJ, Mchale G, Newton MI, Chabrol G, Perry DC (2004) Adv Mater 16:1929CrossRefGoogle Scholar
  21. 21.
    Qian BT, Shen ZQ (2005) Langmuir 21:9007CrossRefGoogle Scholar
  22. 22.
    Larmour IA, Bell SEJ, Saunders GC (2007) Angew Chem 119:1740CrossRefGoogle Scholar
  23. 23.
    Thieme M, Frenzel R, Schmidt S, Simon F, Hennig A, Worch H, Lunkwitz K, Scharnweber D (2001) Adv Eng Mater 3:691CrossRefGoogle Scholar
  24. 24.
    Wenzel RN (1936) Ind Eng Chem 28:988CrossRefGoogle Scholar
  25. 25.
    Cassie ABD, Baxter S (1996) Trans Faraday Soc 40:546CrossRefGoogle Scholar
  26. 26.
    Henderson B (1972) Defects in crystalline solids. Edward Arnold Ltd, LondonGoogle Scholar
  27. 27.
    Hull D, Bacon DJ (2001) Introduction to dislocations. Butterworth-Heinemann, OxfordGoogle Scholar
  28. 28.
    Feng L, Li SH, Li YS, Li HJ, Zhang LJ, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB (2002) Adv Mater 14:1857CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Wenji Xu
    • 1
    Email author
  • Jinlong Song
    • 1
  • Jing Sun
    • 1
  • Qingle Dou
    • 1
  • Xujuan Fan
    • 1
  1. 1.School of Mechanical EngineeringDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations