Journal of Materials Science

, Volume 46, Issue 18, pp 5916–5924 | Cite as

Variation of solute distributions during deformation and bake hardening process and their effect on bake hardening phenomenon in ultra-low carbon bake hardening steels

  • Hua WangEmail author
  • Wen Shi
  • Yan Lin He
  • Peng Peng Liu
  • Lin Li


Three-dimensional atom probe was used to investigate solute carbon and other elements distributions during bake hardening process after pre-deformation and also to analyze their effect on bake hardening phenomenon of the steels. Two different kinds of bake hardening steels were prepared and annealed by water quenching. The as-received samples were pre-deformed at different levels (from 0 to 10%), and baked at 170 °C for 20 min. Distributions and concentrations of solute elements in the steels were characterized with three-dimensional atom probe. Bake hardening values of the steels were examined by tensile experiments. Three dimensional atom probe detection results indicate that C distribution changes little with the increase of pre-deformation in BH-Mn steel. In BH-P steel, however, with the increase of pre-deformation, more C clusters form in the matrix and C concentration decreases. Distribution patterns and the maximum separation distance method results prove that the C cluster is just C segregation or C together with P segregation rather than vanadium carbides precipitate. Moreover, bake hardening experiment results indicate that BH values are similar in the two BH steels and the BH values change only a little as the pre-deformation increases from 2 to 10%. The 4% pre-deformation induces the highest BH values in the two BH steels, and is considered to be the critical pre-deformation in making the balance of Cottrell atmosphere in the two BH steels.


Solute Distribution Vanadium Carbide Steel Matrix Interstitial Free Tensile Experiment 



The authors are thankful to VANITEC, National Nature Science foundation of China program under Grant No. 50934011, and National Basic Research Program of China (973) under Grant No. 2010CB630802 for the project funding.


  1. 1.
    Tanioku T, Hoboh Y, Okamoto A, Mizui N (1991) Development of a new bake-hardenable galvannealed sheet steel for automotive exposed panels. In: SAE Technical Paper 910293, Warrendale, pp 303–308Google Scholar
  2. 2.
    Taylor KA, Speer JG (1997) Development of vanadium-alloyed, bake-hardenable sheet steels for hot-dip coated applications. In: 39th MWSP conference proceedings, ISS, vol XXXV, Indianapolis, pp 49–61Google Scholar
  3. 3.
    Hong MH, Cho NH, Kim SI, Kwon O, Lim SH, Moon WJ (2010) Met Mater Int 16:883CrossRefGoogle Scholar
  4. 4.
    Waterschoot T, Vandeputte S, De Cooman BC, Houbaert Y (1999) The Influence of P, Si and Mn on the mechanical properties and bake-hardening of Ti-ULC Steels. In: 41st MWSP conference proceedings, ISS, vol XXXVII, Indianapolis, pp 425–433Google Scholar
  5. 5.
    Birol Y (2010) J Mater Sci 45:6727. doi: CrossRefGoogle Scholar
  6. 6.
    Milititsky M, Decooman B, Speer J, De Wispelaere N, Akdut N (2006) Metall Mater Trans A 37:2117CrossRefGoogle Scholar
  7. 7.
    Wen Y, Su Q, Wuttig M (1998) Interstitial analysis of ultra low carbon and interstitial free steels. In: 39th MWSP conference proceedings, ISS, vol XXXV, pp 271–280Google Scholar
  8. 8.
    De AK, De Blauwe K, Vandeputte S, De Cooman BC (2000) J Alloys Compd 310:405CrossRefGoogle Scholar
  9. 9.
    Soenen B, De AK, Vandeputte S, De Cooman BC (2004) Acta Mater 52:3483CrossRefGoogle Scholar
  10. 10.
    Al-Shalfan W, Speer JG, Findley K, Matlock DK (2006) Metall Mater Trans A 37A:206Google Scholar
  11. 11.
    Miller MK (2006) J Mater Sci 41:7808. doi: CrossRefGoogle Scholar
  12. 12.
    Blavette D, Duval P, Letellier L, Guttmann M (1996) Acta Mater 44:4995CrossRefGoogle Scholar
  13. 13.
    Menand A, Cadel E, Pareige C, Blavette D (1999) Ultramicroscopy 78:63CrossRefGoogle Scholar
  14. 14.
    Hono K (1999) Acta Mater 47:3127CrossRefGoogle Scholar
  15. 15.
    Wilde J, Cerezo A, Smith GDW (2000) Scr Mater 43:39CrossRefGoogle Scholar
  16. 16.
    Ping DH, Hono K, Nie JF (2003) Scr Mater 48:1017CrossRefGoogle Scholar
  17. 17.
    Oh JC, Ohkubo T, Mukai T, Hono K (2005) Scr Mater 53:675CrossRefGoogle Scholar
  18. 18.
    Pereloma EV, Timokhina IB, Miller MK, Hodgson PD (2007) Acta Mater 55:2587CrossRefGoogle Scholar
  19. 19.
    Caballero FG, Miller MK, Garcia-Mateo C, Capdevila C, Babu SS (2008) Acta Mater 56:188CrossRefGoogle Scholar
  20. 20.
    Yamaguchi Y, Takahashi J, Kawakami K (2009) Ultramicroscopy 109:541CrossRefGoogle Scholar
  21. 21.
    Grennan-Heaven N, Cerezo A, Godfrey TJ, Smith GDW (2007) Ultramicroscopy 107:705CrossRefGoogle Scholar
  22. 22.
    Rachbauer R, Stergar E, Massl S, Moser M, Mayrhofer PH (2009) Scr Mater 61:725CrossRefGoogle Scholar
  23. 23.
    Takahashi J, Tarui T, Kawakami K (2009) Ultramicroscopy 109:193CrossRefGoogle Scholar
  24. 24.
    Takahashi J, Kawakami K, Otsuka H, Fujii H (2009) Ultramicroscopy 109:568CrossRefGoogle Scholar
  25. 25.
    Liu QD, Liu WQ, Wang ZM, Zhou BX (2008) Acta Metall Sin 44:786 (in Chinese)Google Scholar
  26. 26.
    Wang H, Shi W, He YL, Fu RY, Li L (2011) Acta Metall Sin 3:263 (in Chinese)Google Scholar
  27. 27.
    De AK, Vandeputte S, Cooman BCD (2001) Scr Mater 44:695CrossRefGoogle Scholar
  28. 28.
    Zhao JZ, De AK, De Cooman BC (2000) Mater Lett 44:374CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hua Wang
    • 1
    • 2
    Email author
  • Wen Shi
    • 1
  • Yan Lin He
    • 1
  • Peng Peng Liu
    • 1
  • Lin Li
    • 1
  1. 1.College of Materials Science and EngineeringShanghai UniversityShanghaiChina
  2. 2.Shanghai UniversityShanghaiChina

Personalised recommendations