Effects of water vapour on the oxidation of a nickel-base 625 alloy between 900 and 1,100 °C
- 314 Downloads
- 11 Citations
Abstract
The effect of water vapour was studied on a nickel-based SY 625 alloy oxidized at 900, 1000 and 1100 °C under dry and wet conditions. It appears that H2O has little effect on the oxidation rate and scale composition after 48 h. The outer scale is composed of chromia Cr2O3. At 900 and 1,000 °C, NbNi4 and Ni3Mo intermetallics are found at the oxide/alloy interface. At 1,100 °C, the scale is composed of an outer chromia scale and an internal CrNbO4 subscale. At this temperature the oxide scale morphology differs between dry and wet conditions. Under dry conditions the oxide scale appears to be compact but the external part of the scale partially spalled of during cooling. The oxide scales formed under wet conditions show porosities spread inside the scale and the chromia grain size is smaller. At 1,100 °C scale spallation is observed under dry conditions due void accumulation in the middle part of the scale. Under wet conditions the uniform distribution of the porosities inside the scale leads to a better scale adherence.
Keywords
Oxide Scale Parabolic Rate Constant Chromia Scale Scale Spallation FeCr AlloyReferences
- 1.Fontana S, Chevalier S, Caboche G (2009) J Power Sources 193:136CrossRefGoogle Scholar
- 2.Viswanathan R, Sarver J, Tanzosh JM (2006) J Mater Eng Perform 15:255CrossRefGoogle Scholar
- 3.Corrieu JM, Renaud L, Duret C, Cetre Y (2004) Mater Sci Forum 461–464:933CrossRefGoogle Scholar
- 4.Buscail H, Heinze S, Dufour P (1997) J Chim Phys 94:553CrossRefGoogle Scholar
- 5.Buscail H, Heinze S, Dufour P, Larpin JP (1997) Oxid Met 47:445CrossRefGoogle Scholar
- 6.Chevalier S, Juzon P, Przybylski K, Larpin JP (2009) Sci Technol Adv Mater 10:1CrossRefGoogle Scholar
- 7.Jacob YP, Haanappel VAC, Stroosnijder MF, Buscail H, Fielitz P, Borchardt G (2002) Corros Sci 44:2027CrossRefGoogle Scholar
- 8.Zurek J, Michalik M, Schmitz F, Kern TU, Singheiser L, Quadakkers WJ (2005) Oxid Met 63:401CrossRefGoogle Scholar
- 9.Schütze M, Renusch D, Schorr M (2005) Mater High Temp 22:113CrossRefGoogle Scholar
- 10.Galerie A, Henry S, Wouters Y, Mermoux M, Petit JP, Antoni L (2005) Mat High Temp 22:105CrossRefGoogle Scholar
- 11.Larring Y, Haugsrud R, Norby T (2003) J Electrochem Soc 150:B374CrossRefGoogle Scholar
- 12.Yang Z, Xia G, Singh P, Stevenson JW (2005) Solid State Ionics 176:1495CrossRefGoogle Scholar
- 13.Yang Z, Walker MS, Singh P, Stevenson JW, Norby T (2004) J Electrochem Soc 151:B669CrossRefGoogle Scholar
- 14.Zeng XG, Young DJ (1994) Oxid Met 42:163CrossRefGoogle Scholar
- 15.Peng X, Yan J, Zhou Y, Wang F (2005) Acta Mater 53:5079CrossRefGoogle Scholar
- 16.Ehlers J, Young DJ, Smaardijk EJ, Tyagi AK, Penkalla HJ, Singheiser L, Quadakkers WJ (2006) Corros Sci 48:3428CrossRefGoogle Scholar
- 17.Mikkelsen L, Linderot S (2003) Mater Sci Eng A361:198CrossRefGoogle Scholar
- 18.Shen J, Zhou L, Li T (1997) Oxid Met 48:347CrossRefGoogle Scholar
- 19.Othman NK, Othman N, Zhang J, Young DJ (2009) Corros Sci 51:3039CrossRefGoogle Scholar
- 20.Norling R, Nylund A (2005) Oxid Met 63:87CrossRefGoogle Scholar
- 21.Norling R, Olefjord I (2003) Wear 254:173CrossRefGoogle Scholar
- 22.Saunders SRJ, Monteiro M, Rizzo F (2008) Prog Mater Sci 53:775CrossRefGoogle Scholar
- 23.Khalid FA, Benjamin SE (2000) Oxid Met 54:63CrossRefGoogle Scholar
- 24.Indacochea JE, Smith JL, Liyko KR, Karell EJ, Raraz AG (2001) Oxid Met 55:1CrossRefGoogle Scholar
- 25.Birks N, Meier GH (1983) Introduction to high temperature oxidation of metals. Edward Arnold, New YorkGoogle Scholar
- 26.N’Dah E, Hierro MP, Borrero K, Perez FJ (2007) Oxid Met 68:9CrossRefGoogle Scholar
- 27.England DM, Virkar AV (1999) J Electrochem Soc 146:3196CrossRefGoogle Scholar
- 28.Rahmel A (1965) Corros Sci 5:815CrossRefGoogle Scholar
- 29.England DM, Virkar AV (2001) J Electrochem Soc 148:A330CrossRefGoogle Scholar
- 30.Hussain N, Shahid KA, Khan IH, Rahman S (1995) Oxid Met 43:363CrossRefGoogle Scholar
- 31.Hussain N, Qureshi AH, Shahid KA, Chughtai NA, Khalid FA (2004) Oxid Met 61:355CrossRefGoogle Scholar
- 32.Zurek J, Young DJ, Essuman E, Hänsel M, Penkalla HJ, Niewolak L, Quadakkers WJ (2008) Mater Sci Eng A477:259CrossRefGoogle Scholar
- 33.Zurek J, Meier GH, Essuman E, Hänsel M, Singheiser L, Quadakkers WJ (2009) J Alloys Compd 467:450CrossRefGoogle Scholar
- 34.Rietveld HM (1969) J Appl Cryst 2:65CrossRefGoogle Scholar
- 35.Caglioti G, Paoletti A, Ricci FP (1958) Nucl Instr 3:223CrossRefGoogle Scholar
- 36.Srisrual A, Coindeau S, Galerie A, Petit JP, Wouters Y (2009) Corros Sci 51:562CrossRefGoogle Scholar
- 37.Perez FJ, Castaneda SI (2007) Surf Coat Technol 201:6239CrossRefGoogle Scholar
- 38.Fryburg GC, Miller RA, Kohl FJ, Stearns CA (1977) J Electrochem Soc 124:1738CrossRefGoogle Scholar
- 39.Holcomb GR, Alman DE (2006) Scripta Mater 54:1821CrossRefGoogle Scholar
- 40.Chen JH, Rogers PM, Little JA (1997) Oxid Met 47:381CrossRefGoogle Scholar
- 41.Zhou C, Yu J, Gong S, Huibin Xu (2002) Surf Coat Technol 161:86CrossRefGoogle Scholar
- 42.Essuman E, Meier GH, Zurek J, Hänsel M, Norby T, Singheiser L, Quadakkers WJ (2008) Corros Sci 50:1753CrossRefGoogle Scholar
- 43.Qiang Z, Rui T, Kaiju Y, Xin L, Lefu Z (2009) Corros Sci 51:2092CrossRefGoogle Scholar
- 44.Wu Y, Narita T (2007) Surf Coat Technol 202:40Google Scholar
- 45.Tan L, Ren X, Sridharan K, Allen TR (2008) Corros Sci 50:3056CrossRefGoogle Scholar
- 46.Wang X, Wang L-F, Zhu M-L, Zhang J-S, Lei M-K (2006) Trans Nonferrous Met Soc China 16:s676CrossRefGoogle Scholar
- 47.Buscail H, El Messki S, Riffard F, Perrier S, Cueff R, Caudron E, Issartel C (2008) Mat Chem Phys 111:491CrossRefGoogle Scholar
- 48.Hussain N, Shahid KA, Khan IH, Rahman S (1995) Oxid Met 43:363CrossRefGoogle Scholar
- 49.Perez FJ, Otero E, Hierro MP, Gomez C, Pedraza F, De Segovia JL, Roman E (1998) Surf Coat Technol 108–109:127Google Scholar
- 50.Engel W, Fietzek H, Hermann M, Kolarik V (2000) J Phys IV 10:497Google Scholar
- 51.Norby T (1993) J Phys IV 3:99–106Google Scholar
- 52.Henry S, Mougin J, Wouters Y, Petit JP, Galerie A (2000) Mater High Temp 17:231CrossRefGoogle Scholar
- 53.Young D (2008) High temperature oxidation and corrosion of metals. Elsevier Corrosion Series, Series Editor: Tim Burstein, p 490Google Scholar