Advertisement

Journal of Materials Science

, Volume 46, Issue 18, pp 5903–5915 | Cite as

Effects of water vapour on the oxidation of a nickel-base 625 alloy between 900 and 1,100 °C

  • H. BuscailEmail author
  • R. Rolland
  • C. Issartel
  • F. Rabaste
  • F. Riffard
  • L. Aranda
  • M. Vilasi
Article

Abstract

The effect of water vapour was studied on a nickel-based SY 625 alloy oxidized at 900, 1000 and 1100 °C under dry and wet conditions. It appears that H2O has little effect on the oxidation rate and scale composition after 48 h. The outer scale is composed of chromia Cr2O3. At 900 and 1,000 °C, NbNi4 and Ni3Mo intermetallics are found at the oxide/alloy interface. At 1,100 °C, the scale is composed of an outer chromia scale and an internal CrNbO4 subscale. At this temperature the oxide scale morphology differs between dry and wet conditions. Under dry conditions the oxide scale appears to be compact but the external part of the scale partially spalled of during cooling. The oxide scales formed under wet conditions show porosities spread inside the scale and the chromia grain size is smaller. At 1,100 °C scale spallation is observed under dry conditions due void accumulation in the middle part of the scale. Under wet conditions the uniform distribution of the porosities inside the scale leads to a better scale adherence.

Keywords

Oxide Scale Parabolic Rate Constant Chromia Scale Scale Spallation FeCr Alloy 

References

  1. 1.
    Fontana S, Chevalier S, Caboche G (2009) J Power Sources 193:136CrossRefGoogle Scholar
  2. 2.
    Viswanathan R, Sarver J, Tanzosh JM (2006) J Mater Eng Perform 15:255CrossRefGoogle Scholar
  3. 3.
    Corrieu JM, Renaud L, Duret C, Cetre Y (2004) Mater Sci Forum 461–464:933CrossRefGoogle Scholar
  4. 4.
    Buscail H, Heinze S, Dufour P (1997) J Chim Phys 94:553CrossRefGoogle Scholar
  5. 5.
    Buscail H, Heinze S, Dufour P, Larpin JP (1997) Oxid Met 47:445CrossRefGoogle Scholar
  6. 6.
    Chevalier S, Juzon P, Przybylski K, Larpin JP (2009) Sci Technol Adv Mater 10:1CrossRefGoogle Scholar
  7. 7.
    Jacob YP, Haanappel VAC, Stroosnijder MF, Buscail H, Fielitz P, Borchardt G (2002) Corros Sci 44:2027CrossRefGoogle Scholar
  8. 8.
    Zurek J, Michalik M, Schmitz F, Kern TU, Singheiser L, Quadakkers WJ (2005) Oxid Met 63:401CrossRefGoogle Scholar
  9. 9.
    Schütze M, Renusch D, Schorr M (2005) Mater High Temp 22:113CrossRefGoogle Scholar
  10. 10.
    Galerie A, Henry S, Wouters Y, Mermoux M, Petit JP, Antoni L (2005) Mat High Temp 22:105CrossRefGoogle Scholar
  11. 11.
    Larring Y, Haugsrud R, Norby T (2003) J Electrochem Soc 150:B374CrossRefGoogle Scholar
  12. 12.
    Yang Z, Xia G, Singh P, Stevenson JW (2005) Solid State Ionics 176:1495CrossRefGoogle Scholar
  13. 13.
    Yang Z, Walker MS, Singh P, Stevenson JW, Norby T (2004) J Electrochem Soc 151:B669CrossRefGoogle Scholar
  14. 14.
    Zeng XG, Young DJ (1994) Oxid Met 42:163CrossRefGoogle Scholar
  15. 15.
    Peng X, Yan J, Zhou Y, Wang F (2005) Acta Mater 53:5079CrossRefGoogle Scholar
  16. 16.
    Ehlers J, Young DJ, Smaardijk EJ, Tyagi AK, Penkalla HJ, Singheiser L, Quadakkers WJ (2006) Corros Sci 48:3428CrossRefGoogle Scholar
  17. 17.
    Mikkelsen L, Linderot S (2003) Mater Sci Eng A361:198CrossRefGoogle Scholar
  18. 18.
    Shen J, Zhou L, Li T (1997) Oxid Met 48:347CrossRefGoogle Scholar
  19. 19.
    Othman NK, Othman N, Zhang J, Young DJ (2009) Corros Sci 51:3039CrossRefGoogle Scholar
  20. 20.
    Norling R, Nylund A (2005) Oxid Met 63:87CrossRefGoogle Scholar
  21. 21.
    Norling R, Olefjord I (2003) Wear 254:173CrossRefGoogle Scholar
  22. 22.
    Saunders SRJ, Monteiro M, Rizzo F (2008) Prog Mater Sci 53:775CrossRefGoogle Scholar
  23. 23.
    Khalid FA, Benjamin SE (2000) Oxid Met 54:63CrossRefGoogle Scholar
  24. 24.
    Indacochea JE, Smith JL, Liyko KR, Karell EJ, Raraz AG (2001) Oxid Met 55:1CrossRefGoogle Scholar
  25. 25.
    Birks N, Meier GH (1983) Introduction to high temperature oxidation of metals. Edward Arnold, New YorkGoogle Scholar
  26. 26.
    N’Dah E, Hierro MP, Borrero K, Perez FJ (2007) Oxid Met 68:9CrossRefGoogle Scholar
  27. 27.
    England DM, Virkar AV (1999) J Electrochem Soc 146:3196CrossRefGoogle Scholar
  28. 28.
    Rahmel A (1965) Corros Sci 5:815CrossRefGoogle Scholar
  29. 29.
    England DM, Virkar AV (2001) J Electrochem Soc 148:A330CrossRefGoogle Scholar
  30. 30.
    Hussain N, Shahid KA, Khan IH, Rahman S (1995) Oxid Met 43:363CrossRefGoogle Scholar
  31. 31.
    Hussain N, Qureshi AH, Shahid KA, Chughtai NA, Khalid FA (2004) Oxid Met 61:355CrossRefGoogle Scholar
  32. 32.
    Zurek J, Young DJ, Essuman E, Hänsel M, Penkalla HJ, Niewolak L, Quadakkers WJ (2008) Mater Sci Eng A477:259CrossRefGoogle Scholar
  33. 33.
    Zurek J, Meier GH, Essuman E, Hänsel M, Singheiser L, Quadakkers WJ (2009) J Alloys Compd 467:450CrossRefGoogle Scholar
  34. 34.
    Rietveld HM (1969) J Appl Cryst 2:65CrossRefGoogle Scholar
  35. 35.
    Caglioti G, Paoletti A, Ricci FP (1958) Nucl Instr 3:223CrossRefGoogle Scholar
  36. 36.
    Srisrual A, Coindeau S, Galerie A, Petit JP, Wouters Y (2009) Corros Sci 51:562CrossRefGoogle Scholar
  37. 37.
    Perez FJ, Castaneda SI (2007) Surf Coat Technol 201:6239CrossRefGoogle Scholar
  38. 38.
    Fryburg GC, Miller RA, Kohl FJ, Stearns CA (1977) J Electrochem Soc 124:1738CrossRefGoogle Scholar
  39. 39.
    Holcomb GR, Alman DE (2006) Scripta Mater 54:1821CrossRefGoogle Scholar
  40. 40.
    Chen JH, Rogers PM, Little JA (1997) Oxid Met 47:381CrossRefGoogle Scholar
  41. 41.
    Zhou C, Yu J, Gong S, Huibin Xu (2002) Surf Coat Technol 161:86CrossRefGoogle Scholar
  42. 42.
    Essuman E, Meier GH, Zurek J, Hänsel M, Norby T, Singheiser L, Quadakkers WJ (2008) Corros Sci 50:1753CrossRefGoogle Scholar
  43. 43.
    Qiang Z, Rui T, Kaiju Y, Xin L, Lefu Z (2009) Corros Sci 51:2092CrossRefGoogle Scholar
  44. 44.
    Wu Y, Narita T (2007) Surf Coat Technol 202:40Google Scholar
  45. 45.
    Tan L, Ren X, Sridharan K, Allen TR (2008) Corros Sci 50:3056CrossRefGoogle Scholar
  46. 46.
    Wang X, Wang L-F, Zhu M-L, Zhang J-S, Lei M-K (2006) Trans Nonferrous Met Soc China 16:s676CrossRefGoogle Scholar
  47. 47.
    Buscail H, El Messki S, Riffard F, Perrier S, Cueff R, Caudron E, Issartel C (2008) Mat Chem Phys 111:491CrossRefGoogle Scholar
  48. 48.
    Hussain N, Shahid KA, Khan IH, Rahman S (1995) Oxid Met 43:363CrossRefGoogle Scholar
  49. 49.
    Perez FJ, Otero E, Hierro MP, Gomez C, Pedraza F, De Segovia JL, Roman E (1998) Surf Coat Technol 108–109:127Google Scholar
  50. 50.
    Engel W, Fietzek H, Hermann M, Kolarik V (2000) J Phys IV 10:497Google Scholar
  51. 51.
    Norby T (1993) J Phys IV 3:99–106Google Scholar
  52. 52.
    Henry S, Mougin J, Wouters Y, Petit JP, Galerie A (2000) Mater High Temp 17:231CrossRefGoogle Scholar
  53. 53.
    Young D (2008) High temperature oxidation and corrosion of metals. Elsevier Corrosion Series, Series Editor: Tim Burstein, p 490Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • H. Buscail
    • 1
    Email author
  • R. Rolland
    • 1
  • C. Issartel
    • 1
  • F. Rabaste
    • 1
  • F. Riffard
    • 1
  • L. Aranda
    • 2
  • M. Vilasi
    • 2
  1. 1.UBP, Laboratoire Vellave sur l’Elaboration et l’Etude des Matériaux LVEEMClermont UniversitéLe Puy en VelayFrance
  2. 2.Insitut Jean Lamour (UMR 7198), Faculté des Sciences et TechniquesVandoeuvre-lès-NancyFrance

Personalised recommendations