Journal of Materials Science

, Volume 46, Issue 17, pp 5847–5850 | Cite as

Optical and electrical characteristics of amorphous boron carbonitride thin films deposited by radiofrequency sputtering

  • A. EssaftiEmail author
  • E. Ech-chamikh


Amorphous boron carbonitride (a-BCN) thin films were deposited by reactive radiofrequency (RF) sputtering onto silicon and glass substrates, from a boron carbide target in an atmosphere composed of a mixture of argon and nitrogen. The a-BCN films were highly transparent (almost 85%) in the visible and near-infrared regions. The optical band gap and the refractive index in the near-infrared region of the a-BCN films were found to be, respectively, in the range of 3.6 and 1.68 eV. The electrical characterization of the a-BCN films for application as an intermetal dielectric was investigated by measuring the current–voltage characteristic in Al/a-BCN/n-Si/Al structure. The electrical resistivity at room temperature, determined in the low voltage region where the Ohmic conduction mechanism is dominant, is around 2 × 1010 Ω cm. The electrical conduction results, in the high-applied fields, were interpreted in terms of a Schottky mechanism. The dielectric constant is about 2.83 and is consistent with the optical results.


Conduction Mechanism Boron Carbide Amorphous Boron Schottky Emission Current Conduction Mechanism 


  1. 1.
    Morant C, Prieto P, Bareño J, Sanz JM, Elizalde E (2006) Thin Solid Films 515:2007CrossRefGoogle Scholar
  2. 2.
    Aoki H, Ohyama K, Sota H, Seino T, Kimura C, Supino T (2007) Appl Surf Sci 254:596CrossRefGoogle Scholar
  3. 3.
    Ahn H, Klimek KS, Rie K-T (2003) Surf Coat Technol 174–175:1225CrossRefGoogle Scholar
  4. 4.
    Umeda S, Yuki T, Sugiyama T, Sugino T (2004) Diam Relat Mater 13:1135CrossRefGoogle Scholar
  5. 5.
    Aoki H, Shima H, Kimura C, Sugino T (2007) Diam Relat Mater 16:1300CrossRefGoogle Scholar
  6. 6.
    Gómez-Aleixandre C, Essafti A, Albella JM (2000) J Phys Chem B 104:4397CrossRefGoogle Scholar
  7. 7.
    Popov C, Saito K, Ivanov B, Koga Y, Fujiwara S, Shanov V (1998) Thin Solid Films 312:99CrossRefGoogle Scholar
  8. 8.
    Bai SZ, Yao B, Xing GZ, Zhang K, Su WH (2007) Physica B 396:214CrossRefGoogle Scholar
  9. 9.
    Gago R, Jimenez I, Agullo-Rueda F, Albella JM, Czigany Zs, Hultman L (2002) J Appl Phys 92:5177CrossRefGoogle Scholar
  10. 10.
    Yao B, Chen WJ, Liu L, Ding BZ, Su WH (1998) J Appl Phys 84:1412CrossRefGoogle Scholar
  11. 11.
    Essafti A, Ech-chamikh E, Fierro JLG (2005) Diam Relat Mater 14:1663CrossRefGoogle Scholar
  12. 12.
    Swanepoel R (1983) J Phys E Sci Instrum 16:1214CrossRefGoogle Scholar
  13. 13.
    Cao ZX, Oeshner H (2003) J Appl Phys 93:1186CrossRefGoogle Scholar
  14. 14.
    Tauc J, Menth A (1972) J Non-Cryst Solids 8–10:569CrossRefGoogle Scholar
  15. 15.
    Lei MK, Li Q, Zhou ZF, Bello I, Lee CS, Lee TS (2001) Thin Solid Films 389:194CrossRefGoogle Scholar
  16. 16.
    Yang Q, Wang CB, Zhang S, Zhang DM, Shen Q, Zhang LM (2010) Surf Coat Technol 204:1863CrossRefGoogle Scholar
  17. 17.
    Sulyaeva VS, Rumyantsev YuM, Kosinova ML, Golubenko AN, Fainer NI, Kuznetsov FA (2007) Surf Coat Technol 201:9009CrossRefGoogle Scholar
  18. 18.
    Yuki T, Umeda S, Sugino T (2004) Diam Relat Mater 13:1130CrossRefGoogle Scholar
  19. 19.
    Yao B, Liu L, Su WH (1999) J Appl Phys 86:2464CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratoire de Physique des Solides et des Couches Minces (LPSCM), Département de Physique, Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakechMorocco

Personalised recommendations