Effect of holding time on microstructure and mechanical properties of Si3N4/Si3N4 joints brazed with Au58.7Ni36.5V4.8 filler alloy
- 143 Downloads
- 1 Citations
Abstract
Si3N4 ceramics were brazed using Au–Ni–V metal foils at 1423 K for different holding times. Effect of holding time on microstructure and mechanical properties of the joints was investigated. The results indicate that a reaction layer of VN exists at the interface between Si3N4 ceramic and filler alloy. With increasing holding time from 0 to 90 min, thickness of the VN reaction layer increases from 0.4 to 2.8 μm, obeying a linear relation. Mechanism of the interfacial reaction was discussed by calculating the formation of free energy of VN. No specific orientation relationship exists between VN reaction layer and Si3N4 ceramic. In addition, Ni3Si intermetallic compound appears in the joint when the holding time increases to 90 min, resulting in the deterioration of the joint strength.
Keywords
Filler Metal Reaction Layer Joint Strength Standard Gibbs Energy Braze AlloyNotes
Acknowledgements
This study was supported by the National Nature Science Foundation of China under the number of 50975064 and 51021002.
References
- 1.Peteves SD, Nicholas MG (1996) J Am Ceram Soc 79:1553CrossRefGoogle Scholar
- 2.Lemus J, Drew RAL (2003) Mater Sci Eng A 352:169CrossRefGoogle Scholar
- 3.Zhang J, Liu CF, Naka M, Meng QC, Zhou Y (2004) J Mater Sci 39:4587. doi: https://doi.org/10.1023/B:JMSC.0000034153.96175.1b CrossRefGoogle Scholar
- 4.Kim JJ, Park JW, Eagar TM (2003) Mater Sci Eng A 344:240CrossRefGoogle Scholar
- 5.Liaw DW, Shiue RK (2005) Int J Refract Met Hard Mater 23:91CrossRefGoogle Scholar
- 6.Xiong HP, Dong W, Chen B, Kang YS, Kawasaki A, Okamura H, Watanabe R (2008) Mater Sci Eng A 474:376CrossRefGoogle Scholar
- 7.Muroga T, Nagasaka T, Abe K, Chernov VM, Matsui H, Smith DL, Xu ZY, Zinkle SJ (2002) J Nucl Mater 307:547CrossRefGoogle Scholar
- 8.Ito Y, Jinbo T (1993) Mater Trans JIM 34:966CrossRefGoogle Scholar
- 9.Voytovych R, Koltsov A, Hodaj F, Eustathopoulos N (2007) Acta Mater 55:6316CrossRefGoogle Scholar
- 10.Ei-Sayed MH, Naka M (1998) J Mater Sci 33:2869. doi: https://doi.org/10.1023/A:1017546105704 CrossRefGoogle Scholar
- 11.Rijnders MR, Peteves SD (1999) Scr Mater 41:1137CrossRefGoogle Scholar
- 12.Paulasto M, Ceccone C, Peteves SD (1997) Scr Mater 36:1167CrossRefGoogle Scholar
- 13.Zhang J, Sun Y (2010) J Eur Ceram Soc 30:751CrossRefGoogle Scholar
- 14.Zhang J, Sun Y, Liu CF, Zhang HW (2010) J Mater Sci 45:2188. doi: https://doi.org/10.1007/s10853-009-4132-1 CrossRefGoogle Scholar
- 15.Peteves SD, Paulasto M, Ceccone G, Stamos V (1998) Acta Mater 46:2407Google Scholar
- 16.Villars P, Prince A, Okamoto H (1995) Handbook of ternary alloy phase diagrams. Materials information society. ASM International, Materials ParkGoogle Scholar
- 17.Wang WE, Kim YS, Hong HS (2000) J Alloy Compd 308:147CrossRefGoogle Scholar
- 18.Liu CF, Zhang J, Zhou Y (2008) Mater Sci Eng A 491:483CrossRefGoogle Scholar
- 19.Barin I (1995) Thermochemical data for pure substance. VCH, New YorkCrossRefGoogle Scholar
- 20.Wang J, Liu LB, Liu HS, Jin ZP (2007) Comput Coupling Phase Diagr Thermochem 31:249CrossRefGoogle Scholar
- 21.Portmann MJ, Erni R, Heinrich H, Kostorz G (2004) Micron 35:695CrossRefGoogle Scholar
- 22.Martinelli AE, Drew RAL (1999) J Eur Ceram Soc 19:2173CrossRefGoogle Scholar
- 23.Liu CF, Zhang J, Zhou Y, Yi HL, Naka M (2009) J Alloy Compd 471:217CrossRefGoogle Scholar
- 24.He YM, Zhang J, Liu CF, Sun Y (2010) Mater Sci Eng A 527:2819CrossRefGoogle Scholar
- 25.Labat S, Gergaud P, Thomas O, Gilles B, Marty A, Lefebvre S (1997) Mater Res Soc 475:363CrossRefGoogle Scholar
- 26.Dutra AT, Ferrandini PL, Caram R (2007) J Alloy Compd 432:167CrossRefGoogle Scholar