Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5815–5821 | Cite as

Coupled thermo-mechanical model based comparison of friction stir welding processes of AA2024-T3 in different thicknesses

  • Z. ZhangEmail author
  • J. T. Chen
  • Z. W. Zhang
  • H. W. Zhang
Article

Abstract

A fully coupled thermo-mechanical finite element model was used to study the friction stir welding process of AA2024-T3 in different thicknesses. The computational results show that the material flows on the retreating and the front sides are higher. So, the slipping rates on the retreating and the front sides are lower than the ones on the trailing and advancing sides. This is the reason that the heat fluxes on the trailing and the advancing sides are higher, which leads to the fact that the temperatures are higher in this region for both thin and thick plates. The energy entering the welding plate accounts for over 50% in the total energy and about 85% in the energy comes from the frictional heat in FSW of AA2024-T3 and the balance from the mechanical effects. The stirring effect of the welding tool becomes weaker in FSW of thick plates. With consideration of the material deformations and the energy conversions, FSW of thin plates shows advantages.

Keywords

Welding Friction Stir Welding Friction Stir Welding Slip Rate Thick Plate 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 10802017) and the National Key Basic Research Special Foundation of China (2010CB832704).

References

  1. 1.
    Bhadeshia HKDH, DebRoy T (2009) Sci Technol Weld Join 14:193CrossRefGoogle Scholar
  2. 2.
    Cavaliere P, Squillace A, Panella F (2008) J Mater Process Technol 200:364CrossRefGoogle Scholar
  3. 3.
    Lorrain O, Serri J, Favier V, Zahrouni H, Hadrouz ME (2009) J Mech Mater Struct 4:351CrossRefGoogle Scholar
  4. 4.
    Ma ZY (2008) Metall Mater Trans A 39:642CrossRefGoogle Scholar
  5. 5.
    Mahmoud ERI, Takahashi M, Shibayanagi T, Ikeuchi K (2009) Sci Technol Weld Join 14:413CrossRefGoogle Scholar
  6. 6.
    Mishra RS, Ma ZY (2005) Mater Sci Eng R 50:1CrossRefGoogle Scholar
  7. 7.
    Nandan R, DebRoy T, Bhadeshia HKDH (2008) Prog Mater Sci 53:980CrossRefGoogle Scholar
  8. 8.
    Zhou L, Liu HJ (2010) Int J Hydro Energy 35:8733CrossRefGoogle Scholar
  9. 9.
    Buffa G, Fratini L, Shivpuri R (2007) J Mater Process Technol 191:356CrossRefGoogle Scholar
  10. 10.
    Genevois C, Fabr`egue D, Deschamps A, Poole WJ (2006) Mater Sci Eng A 441:39CrossRefGoogle Scholar
  11. 11.
    Simar A, Bre′chet Y, de Meester B, Denquin A, Pardoen T (2007) Acta Mater 55:6133CrossRefGoogle Scholar
  12. 12.
    Zhang Z, Zhang HW (2009) Mater Des 30:900CrossRefGoogle Scholar
  13. 13.
    Zhang Z, Zhang HW (2009) J Mater Process Technol 209:241CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Zhang HW (2007) Sci Technol Weld Join 12:226CrossRefGoogle Scholar
  15. 15.
    Zhang Z, Liu YL, Chen JT (2009) Int J Adv Manuf Technol 45:889CrossRefGoogle Scholar
  16. 16.
    Hamilton C, Dymek S, Sommers A (2008) Int J Mach Tools Manuf 48:1120CrossRefGoogle Scholar
  17. 17.
    Khandkar MZH, Khan JA, Reynolds AP (2003) Sci Technol Weld Join 8:165CrossRefGoogle Scholar
  18. 18.
    Schmidt H, Hattel J (2005) Model Simul Mater Sci Eng 13:77CrossRefGoogle Scholar
  19. 19.
    Qin X, Michaleris P (2009) Sci Technol Weld Join 14:640CrossRefGoogle Scholar
  20. 20.
    Arora A, Nandan R, Reynolds AP, DebRoy T (2009) Scr Mater 60:13CrossRefGoogle Scholar
  21. 21.
    Assidi M, Fourment L, Guerdoux S, Nelson T (2010) Int J Mach Tools Manuf 50:143CrossRefGoogle Scholar
  22. 22.
    Zhang Z (2008) J Mater Sci 43:5867. doi: https://doi.org/10.1007/s10853-008-2865-x CrossRefGoogle Scholar
  23. 23.
    Zhang Z, Chen JT (2008) J Mater Sci 43:222. doi: https://doi.org/10.1007/s10853-007-2129-1 CrossRefGoogle Scholar
  24. 24.
    Zhang HW, Zhang Z, Chen JT (2007) J Mater Process Technol 183:62CrossRefGoogle Scholar
  25. 25.
    Colligan K (1999) Weld J 78:229Google Scholar
  26. 26.
    Guerra M, Schmidt C, McClure JC, Murr LE, Nunes AC (2003) Mater Charact 49:95CrossRefGoogle Scholar
  27. 27.
    Li Y, Murr LE, McClure JC (1999) Scr Mater 40:1041CrossRefGoogle Scholar
  28. 28.
    Zhang HW, Zhang Z, Chen JT (2005) Sci Eng A 403:340CrossRefGoogle Scholar
  29. 29.
    Zhang Z, Zhang HW (2008) Int J Adv Manuf Technol 37:279CrossRefGoogle Scholar
  30. 30.
    Cavaliere P, Campanile G, Panella F, Squillace A (2006) J Mater Process Technol 180:263CrossRefGoogle Scholar
  31. 31.
    Dixit V, Mishra RS, Lederich RJ, Talwar R (2009) Sci Technol Weld Join 14:346CrossRefGoogle Scholar
  32. 32.
    Peel M, Steuwer A, Preuss M, Withers PJ (2003) Acta Mater 51:4791CrossRefGoogle Scholar
  33. 33.
    Lombard H, Hattingh DG, Steuwer A, James MN (2009) Mater Sci Eng A 501:119CrossRefGoogle Scholar
  34. 34.
    Lombard H, Hattingh DG, Steuwer A, James MN (2008) Eng Fract Mech 75:341CrossRefGoogle Scholar
  35. 35.
    Yan JH, Sutton MA, Reynolds AP (2005) Sci Technol Weld Join 10:725CrossRefGoogle Scholar
  36. 36.
    Nandan R, Roy GG, Lienert TJ, DebRoy T (2007) Acta Mater 55:883CrossRefGoogle Scholar
  37. 37.
    Chen CM, Kovacevic R (2003) Int J Mach Tools Manuf 43:1319CrossRefGoogle Scholar
  38. 38.
    Zhang Z, Zhang HW (2007) Sci Technol Weld Join 12:436CrossRefGoogle Scholar
  39. 39.
    Belystchko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York, p 393Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Z. Zhang
    • 1
    Email author
  • J. T. Chen
    • 1
  • Z. W. Zhang
    • 1
  • H. W. Zhang
    • 1
  1. 1.State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and MechanicsDalian University of TechnologyDalianChina

Personalised recommendations