Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5790–5797 | Cite as

Influence of humidity on the scratch behavior of polystyrene–acrylonitrile random copolymers

  • Robert Browning
  • Rolf Minkwitz
  • Piyada Charoensirisomboon
  • Hung-Jue SueEmail author
Article

Abstract

The effect of exposure to a humid environment on the scratch behavior of a set of model polystyrene–acrylonitrile (SAN) random copolymers was investigated over a period of 10 days. Linear increasing load scratch tests were performed according to ASTM D7027/ISO 19252. The critical loads for the onset of key scratch deformation mechanisms like periodic micro-cracking, plowing, and scratch visibility were used as metrics for evaluating scratch resistance. The scratching coefficient of friction was evaluated, as well. It was found that, in general, the scratch resistance decreases during the first few days of moisture exposure, but then experiences a degree of recovery upon saturation. It is proposed that the initially absorbed moisture causes plasticization, making the surface weaker until saturation where the water molecules gather together on the surface to impart a degree of lubrication and consequently improve the scratch resistance. Implications of moisture absorption on the scratch behavior of polymers will be discussed.

Keywords

Contact Angle Moisture Absorption Plowing Scratch Resistance Applied Normal Load 

Notes

Acknowledgements

The authors would like to thank both BASF SE and the Texas A&M Scratch Behavior of Polymers Consortium for the generous financial support of this work. Surface Machine Systems and the Polymer Technology Center are also given thanks for the use of their facilities and equipment. Thanks are given to Ehsan Moghbelli for the measurement of contact angles.

References

  1. 1.
    Timoteo GAV, Fechine GJM, Rabello MS (2008) Polym Eng Sci 48:2003CrossRefGoogle Scholar
  2. 2.
    Sousa AR, Amorim KLE, Medeiros ES, Melo TJA, Rabello MS (2006) Polym Degrad Stab 91:1504CrossRefGoogle Scholar
  3. 3.
    Nakamura H, Nakamura T, Noguchi T, Imagawa K (2006) Polym Degrad Stab 91:740CrossRefGoogle Scholar
  4. 4.
    Jiang H, Browning R, Liu P, Chang TA, Sue H-J (2010) J Coat Technol 8:255CrossRefGoogle Scholar
  5. 5.
    Rabek JF (1995) Polymer photodegradation: mechanisms and experimental methods. Chapman and Hall, LondonCrossRefGoogle Scholar
  6. 6.
    Brostow W, Deborde J-L, Jaklewicz M, Olszynski P (2003) J Mater Ed 25:119Google Scholar
  7. 7.
    Brostow W, Kovacevic V, Vrsaljko D, Whitworth J (2010) J Mater Ed 32:273Google Scholar
  8. 8.
    Myshkin NK, Petrokovets MI, Kovalev AV (2005) Tribol Int 38:910CrossRefGoogle Scholar
  9. 9.
    Hainsworth SV, Kilgallon PJ (2008) Prog Org Coat 62:21CrossRefGoogle Scholar
  10. 10.
    Starczewski L, Szumniak J (1998) Surf Coat Technol 100:33CrossRefGoogle Scholar
  11. 11.
    van der Heide E, Lossie CM, van Bommel KJC, Reinders SAF, Lenting HBM (2010) Tribol Trans 53:842CrossRefGoogle Scholar
  12. 12.
    Cinquin J, Abjean P (1993) Int SAMPE Symp Exhib 1539Google Scholar
  13. 13.
    Biney PO, Zhong Y, Zhou J (1998) Int SAMPE Symp Exhib 43:120Google Scholar
  14. 14.
    Wilenski M (1997) PhD Thesis, Michigan State UniversityGoogle Scholar
  15. 15.
    Li Y, Miranda J, Sue H-J (2001) Polymer 42:7791CrossRefGoogle Scholar
  16. 16.
    Li Y, Miranda J, Sue H-J (2002) Polym Eng Sci 42:375CrossRefGoogle Scholar
  17. 17.
    Lin YC, Chen X (2005) Polymer 46:11994CrossRefGoogle Scholar
  18. 18.
    Bair HE, Johnson GE, Merriweather R (1978) J Appl Phys 49:4976CrossRefGoogle Scholar
  19. 19.
    Smith WM (1958) Vinyl resins. Reinhold Publishing Corporation, New YorkCrossRefGoogle Scholar
  20. 20.
    Browning R, Minkwitz R, Charoensirisomboon P, Sue H-J (2010) Polym Eng and Sci, DOI#22003Google Scholar
  21. 21.
    Adão MHVC, Saramago BJV, Fernandes AC (1999) J Colloid Interface Sci 217:94CrossRefGoogle Scholar
  22. 22.
    ASTM D7027 (2005) ASTM InternationalGoogle Scholar
  23. 23.
    ISO 19252 (2008) ISO InternationalGoogle Scholar
  24. 24.
    Jiang H, Browning R, Fincher J, Gasbarro A, Jones S, Sue H-J (2008) Appl Surf Sci 254:4494CrossRefGoogle Scholar
  25. 25.
    Jiang H, Whitcomb J, Sue H-J (2009) SPE TPO Conf, Sterling Heights, MichiganGoogle Scholar
  26. 26.
    Shen CH, Springer GS (1976) J Comp Mater 10:2CrossRefGoogle Scholar
  27. 27.
    Hansen CM (1980) Polym Eng Sci 20:252CrossRefGoogle Scholar
  28. 28.
    Bruder F, Haese W (1999) Jpn J Appl Phys 38:1709CrossRefGoogle Scholar
  29. 29.
    Barrie JA, Platt B (1963) Polymer 4:303CrossRefGoogle Scholar
  30. 30.
    Woo M, Piggott MR (1987) J Compos Technol Res 9:101CrossRefGoogle Scholar
  31. 31.
    Karad SK, Jones FR (2005) Polymer 46:2732CrossRefGoogle Scholar
  32. 32.
    Mitsui T, Rose MK, Fomin E, Ogletree DF, Salmeron M (2002) Phys Rev Lett 297:1850Google Scholar
  33. 33.
    Jiang H, Browning R, Sue H-J (2009) Polymer 50:4056CrossRefGoogle Scholar
  34. 34.
    Browning R, Lim GT, Moyse A, Sun LY, Sue H-J (2006) Polym Eng Sci 46:601CrossRefGoogle Scholar
  35. 35.
    Jiang H, Lim G-T, Reddy JN, Whitcomb JD, Sue H-J (2007) J Polym Sci B: Polym Phys 45:1435CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Robert Browning
    • 1
  • Rolf Minkwitz
    • 2
  • Piyada Charoensirisomboon
    • 2
  • Hung-Jue Sue
    • 1
    Email author
  1. 1.Polymer Technology Center, Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.BASF SELudwigshafenGermany

Personalised recommendations