Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5751–5760 | Cite as

Comparison of three methods for generating superhydrophobic, superoleophobic nylon nonwoven surfaces

  • Rahul Saraf
  • Hoon Joo LeeEmail author
  • Stephen Michielsen
  • Jeffery Owens
  • Colin Willis
  • Corinne Stone
  • Eugene Wilusz
Article

Abstract

This research deals with creating a superhydrophobic/superoleophobic surface by preparing a metastable Cassie–Baxter (CB) surface. To create a CB surface it is essential to have low surface energy and properly constructed surface morphology. We have explored three different techniques to achieve superhydrophobicity and superoleophobicity using hydroentangled nylon nonwoven fabric: pulsed plasma polymerization of 1H,1H,2H,2H-perfluorodecyl acrylate (PFAC8), microwave-assisted condensation of 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (FS), and FS condensation through wet processing. Nonwoven fabric materials prepared using these three techniques were superhydrophobic and superoleophobic as shown by their very high contact angles for both water (contact angles of 168–174°) and dodecane (contact angles of 153–160°). The measured contact angles agree with the predicted values obtained through designing a CB surface.

Keywords

Contact Angle Dodecane Nonwoven Fabric Apparent Contact Angle High Contact Angle 

Notes

Acknowledgements

This material was partially sponsored by US Army Natick Soldier Research Development and Engineering Center (NSRDEC) and Air Force Research Laboratory (AFRL) [grant number FA8650-07-1-5903]; and The Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense [grant number HDTRA1-08-1-0049]. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. We thank the Nonwoven Institute (NI) for sharing hydroentangled nonwoven fabric with us.

References

  1. 1.
    Barthlott W, Neinhuis C (1997) Planta 202:1CrossRefGoogle Scholar
  2. 2.
    Wu X, Shi G (2006) J Phys Chem B 110:1147Google Scholar
  3. 3.
    Michielsen S, Lee H (2007) Langmuir 23:6004CrossRefGoogle Scholar
  4. 4.
    Tuteja A, Choi W, Ma M, Mabry J, Mazzella S, Rutledge G, McKinley G, Cohen R (2007) Science 318:1618CrossRefGoogle Scholar
  5. 5.
    Lee H, Michielsen S (2006) JOTI 5:445Google Scholar
  6. 6.
    Wenzel R (1936) Ind Eng Chem 28:988CrossRefGoogle Scholar
  7. 7.
    Cassie A, Baxter S (1944) Trans Faraday Soc 40:546CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Hoefnagels H, Wu D, de With G, Ming W (2007) Langmuir 23:13158CrossRefGoogle Scholar
  10. 10.
    Quere D (2005) Rep Prog Phys 68:2495CrossRefGoogle Scholar
  11. 11.
    Lee J, McCarthy T (2007) Macromolecules 40:3965CrossRefGoogle Scholar
  12. 12.
    Patankar NA (2003) Langmuir 19:1249CrossRefGoogle Scholar
  13. 13.
    Marmur A (2003) Langmuir 19:8343CrossRefGoogle Scholar
  14. 14.
    Giovanni A, DeSimone A (2005) Proc R Soc A 461:79CrossRefGoogle Scholar
  15. 15.
    Bico J, Thiele U, Quere D (2002) Colloids Surf A 206:41CrossRefGoogle Scholar
  16. 16.
    Zheng H, Seyam A, Shiffler D (2004) In: Proceedings of the INTC conference, Toronto, CanadaGoogle Scholar
  17. 17.
    Coulson S, Woodward I, Badyal J, Brewer S, Willis C (2000) Chem Mater 12:2031CrossRefGoogle Scholar
  18. 18.
    Lee H, Willis C, Stone C (2011) J Mater Sci 46:3907. doi: https://doi.org/10.1007/s10853-011-5314-1 CrossRefGoogle Scholar
  19. 19.
    Owens J (2007) Ph.D. Dissertation, College of Science and Mathematics, Auburn University Auburn, ALGoogle Scholar
  20. 20.
    Loupy A (2003) Microwaves in organic synthesis, 2nd edn. Wiley-VCH, Winheim, p 64Google Scholar
  21. 21.
    Stoeber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62CrossRefGoogle Scholar
  22. 22.
    Wright J, Sommerdijk N (2001) Sol-gel materials chemistry and applications, 1st edn. Taylor & Francis Books Ltd, London, p 15Google Scholar
  23. 23.
    Thompson K (2005) Ph.D. Dissertation, School of Polymer Textile & Fiber Engineering, Georgia Institute of Technology Atlanta, GAGoogle Scholar
  24. 24.
    Lee H, Michielsen S (2007) J Polym Sci 45:253CrossRefGoogle Scholar
  25. 25.
    Fowkes F (1963) J Phys Chem 67:2538CrossRefGoogle Scholar
  26. 26.
    Owens D, Wendt R (1969) J Appl Polym Sci 13:1741CrossRefGoogle Scholar
  27. 27.
    Mchale G, Shirtcliffe NJ, Newton MI (2004) Langmuir 20:10146CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen and the US Department of Defense 2011

Authors and Affiliations

  • Rahul Saraf
    • 1
  • Hoon Joo Lee
    • 1
    Email author
  • Stephen Michielsen
    • 1
  • Jeffery Owens
    • 2
  • Colin Willis
    • 3
  • Corinne Stone
    • 3
  • Eugene Wilusz
    • 4
  1. 1.North Carolina State UniversityRaleighUSA
  2. 2.Air Force Research LaboratoryTyndall Air Force BaseUSA
  3. 3.Defence Science and Technology LaboratorySalisburyUK
  4. 4.Army Natick Soldier Research, Development, and Engineering CenterNatickUSA

Personalised recommendations