Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5723–5731 | Cite as

Hybrid organic/inorganic composites based on silica and weak synthetic polyelectrolytes

  • Marcela MihaiEmail author
  • Ecaterina Stela Drăgan
Article

Abstract

The preparation and characterization of new organic/inorganic composites by the consecutive adsorption of weak polyelectrolytes on silica particles were studied in the article. Two polycations containing primary amine groups in the side chains, poly(vinylamine) or poly[N(β-aminoethylene) acrylamide], and poly(acrylic acid) as polyanion were used for the hybrid materials construction. The stability of the organic/inorganic composites has been increased by a heat-induced reaction at 150 °C. The organic/silica hybrids properties were monitored by potentiometric titration, laser light scattering, infrared spectroscopy, and thermogravimetric analysis. The adsorption of methylene blue by the composite materials has been tested. The dye adsorption capacity was strongly influenced by the dye concentration, the nature of the last adsorbed layer, the polyions concentration, and the composite thermal treatment.

Keywords

Methylene Blue Silica Particle Conversion Degree Adsorption Step Multilayer Thin Film 

Notes

Acknowledgements

The authors thank the group of Micro- and nano-structures characterization Laboratory (“Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania) for performing particle dimension measurements. The financial support of European Social Fund—“Cristofor I. Simionescu” Postdoctoral Fellowship Program (ID POSDRU/89/1.5/S/55216) and Grant No. 981 (Exploratory Research Project) is gratefully acknowledged.

References

  1. 1.
    Kelly A (2006) J Mater Sci 41:905. doi: https://doi.org/10.1007/s10853-006-6569-9 CrossRefGoogle Scholar
  2. 2.
    Kuraoka K, Ueda T, Sato M, Okamoto T, Yazawa T (2005) J Mater Sci 40:3577. doi: https://doi.org/10.1007/s10853-005-2880-0 CrossRefGoogle Scholar
  3. 3.
    Dorozhkin SV (2009) J Mater Sci 44:2343. doi: https://doi.org/10.1007/s10853-008-3124-x CrossRefGoogle Scholar
  4. 4.
    Loh KJ, Chang D (2011) J Mater Sci 46:228. doi: https://doi.org/10.1007/s10853-010-4940-3 CrossRefGoogle Scholar
  5. 5.
    Decher G (1997) Science 27:1232CrossRefGoogle Scholar
  6. 6.
    von Klitzing R, Tieke B (2004) Adv Polym Sci 165:177CrossRefGoogle Scholar
  7. 7.
    Pallandre A, Moussa A, Nysten B, Jonas AM (2006) Adv Mater 18:481CrossRefGoogle Scholar
  8. 8.
    Dragan ES, Mihai M, Schauer J, Ghimici L (2005) J Polym Sci A Polym Chem 43:4161CrossRefGoogle Scholar
  9. 9.
    Kudaibergenov SE, Tatykhanova GS, Arinov BZh, Kozhakhmetov SK, Aseyev VO (2008) eXPRESS Polym Lett 2:101CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Fu H, Kobayashi T (2010) J Mater Sci 45:6694. doi: https://doi.org/10.1007/s10853-010-4762-3 CrossRefGoogle Scholar
  12. 12.
    Dragan ES, Schwarz S, Eichhorn K-J (2010) Colloid Surf A 372:210CrossRefGoogle Scholar
  13. 13.
    Fendler JH (1996) Chem Mater 8:1616CrossRefGoogle Scholar
  14. 14.
    Mamedov A, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A (2002) Nat Mater 1:190CrossRefGoogle Scholar
  15. 15.
    Sukhishvili SA (2005) Curr Opin Coll Interface Sci 10:37CrossRefGoogle Scholar
  16. 16.
    Serizawa T, Hamada K, Kitayama T, Fujimoto N, Hatada K, Akashi M (2000) J Am Chem Soc 122:1891CrossRefGoogle Scholar
  17. 17.
    Caruso F, Furlong DN, Ariga K, Ichinose I, Kunitake T (1998) Langmuir 14:4559CrossRefGoogle Scholar
  18. 18.
    Harris JJ, Bruening ML (2000) Langmuir 16:2006CrossRefGoogle Scholar
  19. 19.
    Caruso F, Schüler C (2000) Langmuir 16:9595CrossRefGoogle Scholar
  20. 20.
    Yang X, Johnson S, Shi J, Holesinger T, Swanson B (1997) Sens Actuator B Chem 45:87CrossRefGoogle Scholar
  21. 21.
    Krasemann L, Tieke B (2000) Langmuir 16:287CrossRefGoogle Scholar
  22. 22.
    DeLongchamp D, Hammond PT (2001) Adv Mater 13:1455CrossRefGoogle Scholar
  23. 23.
    Sukhorukov GB, Antipov AA, Voigt A, Donath E, Mohwald H (2001) Macromol Rapid Commun 22:44CrossRefGoogle Scholar
  24. 24.
    Shutava T, Prouty M, Kommireddy D, Lvov Y (2005) Macromolecules 38:2850CrossRefGoogle Scholar
  25. 25.
    Tong W, Gao C, Mohwald H (2006) Macromolecules 39:335CrossRefGoogle Scholar
  26. 26.
    Balachandra M, Dai J, Bruening ML (2002) Macromolecules 35:3171CrossRefGoogle Scholar
  27. 27.
    Dragan ES, Mihai M, Airinei A (2006) J Polym Sci A Polym Chem 44:5898CrossRefGoogle Scholar
  28. 28.
    Dragan S, Barboiu V, Petrariu I, Dima M (1981) J Polym Sci Polym Chem Ed 19:2869CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Bucatariu F, Dragan ES, Simon F (2007) Biomacromolecules 8:2954CrossRefGoogle Scholar
  31. 31.
    Simon F, Dragan ES, Bucatariu F (2008) React Funct Polym 68:1178CrossRefGoogle Scholar
  32. 32.
    Pretsch E, Bulmann P, Affolter C (eds) (2000) Structure determination of organic compounds. Tables of spectral data, 3rd edn. Springer-Verlag, Berlin, Heidelberg, New York, pp 245–312Google Scholar
  33. 33.
    Berwig E, Severgnini VLS, Soldi MS, Bianco G, Pinheiro EA, Pires ATN, Soldi V (2003) Polym Degrad Stab 79:93CrossRefGoogle Scholar
  34. 34.
    Coats W, Redfern JP (1964) Nature 201:68CrossRefGoogle Scholar
  35. 35.
    Hamciuc C, Vlad-Bubulac T, Petreus O, Lisa G (2007) Eur Polym J 43:980CrossRefGoogle Scholar
  36. 36.
    Cai J, Bi L (2008) Integral Energy Fuels 22:2172CrossRefGoogle Scholar
  37. 37.
    Stawski D, Jantas R (2009) Potato Res 52:355CrossRefGoogle Scholar
  38. 38.
    Reich L, Levi DW (1963) Makromol Chem 66:102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIaşiRomânia

Personalised recommendations