Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5698–5701 | Cite as

Wetting and infiltration of volatile fluorides by In-Ti melt

  • S. Barzilai
  • H. Nagar
  • N. Froumin
  • N. FrageEmail author
Article

Abstract

In this study, the effect of the volatile nature of thermodynamically stable fluorides (MgF2, CaF2, and BaF2) on wetting and infiltration phenomenon is discussed. Specially designed sets of experiments under different conditions of fluoride vapor evacuation were conducted. Experiments with In-Ti (~1 at.%) drops covered by a small cap and with artificially closed and open capillaries suggested that under restricted conditions of vapor evacuation, a thin solid layer is formed on the surface of the liquid metal, mechanically preventing both the spreading of In-Ti melt at the surface of the dense substrates and liquid penetration into the porous preforms.

Keywords

Contact Angle CaF2 BaF2 MgF2 Dynamic Vacuum 

Notes

Acknowledgements

The authors wish to thank Mr. Etay Meydany and to Mr. Amir Hagag for their technical assistance. This study was supported by Grant no. 138-05 from the Israeli Council of Higher Education and the Israeli Atomic Energy Commission.

References

  1. 1.
    Clyne TW (2000) In: Clyne TW (ed) Metal matrix composites. Elsevier science Ltd, Oxford, pp 1–26Google Scholar
  2. 2.
    Asm International Handbook Committee (2010) In: ASM Metals Handbook, vol 7. ASM International, Metals ParkGoogle Scholar
  3. 3.
    Delannay F, Froyen L, Deruyttere A (1987) J Mater Sci 22:1. doi: https://doi.org/10.1007/BF01160545 CrossRefGoogle Scholar
  4. 4.
    Trumble KP (1998) Acta Mater 46:2363CrossRefGoogle Scholar
  5. 5.
    Kaptay G, Barczy T (2005) J Mater Sci 40:2531. doi: https://doi.org/10.1007/s10853-005-1987-7 CrossRefGoogle Scholar
  6. 6.
    Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures, pergamon materials series. Pergamon, New YorkGoogle Scholar
  7. 7.
    Tariolle S, Thévenot F, Aizenstein M, Dariel MP, Frumin N, Frage N (2004) J Solid State Chem 177:400CrossRefGoogle Scholar
  8. 8.
    Ciftja A, Engh TA, Tangstad M (2010) Metall Mater Trans A 41A:3183CrossRefGoogle Scholar
  9. 9.
    Froumin N, Barzilai S, Aizenshtein M, Lomberg M, Frage N (2008) Mat Sci Eng A 495:181CrossRefGoogle Scholar
  10. 10.
    Barzilai S, Argaman N, Froumin N, Fuks D, Frage N (2009) Surf Sci 603:2096CrossRefGoogle Scholar
  11. 11.
    Barzilai S, Aizenstein M, Froumin N, Frage N (2010) J Mater Sci 45:2085. doi: https://doi.org/10.1007/s10853-009-4018-2 CrossRefGoogle Scholar
  12. 12.
    Thermodynamic Data-Base SSUB3, version 3.1 (2001) Produced by Scientific Group Thermo-data EuropeGoogle Scholar
  13. 13.
    Naidich Y (1991) In: Surface phenomena in metals and alloys and their uses in material science, Naukova Dumka, Kiev (in Russian)Google Scholar
  14. 14.
    Barzilai S, Argaman N, Froumin N, Fuks D, Frage N (2008) Surf Sci 602:1517CrossRefGoogle Scholar
  15. 15.
    Barzilai S, Argaman N, Froumin N, Fuks D, Frage N (2008) Appl Phys A 93:379CrossRefGoogle Scholar
  16. 16.
    Barzilai S, Aizenshtein M, Lomberg M, Froumin N, Frage N (2007) Solid State Sci 9:338CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Department of MaterialsNRC-NegevBeer-ShevaIsrael

Personalised recommendations