Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5680–5689 | Cite as

Manufacturing and physico-mechanical characterization of carbon nanohorns/polyacrylonitrile nanocomposites

  • Aneta Fraczek-Szczypta
  • Stanislaw BlazewiczEmail author
Article

Abstract

The use of carbon nanohorns (SWCNHs) as a modifying filler in a polyacrylonitrile (PAN) matrix is studied with the goal of elaborating nanocomposites. The study deals with assessment of the dispersity of SWCNHs in a PAN polymer suspension. The SWCNHs were introduced into the PAN-based suspension using different methods, including mechanical stirring, ultrasonification and the combination of ultrasonification with addition of a surfactant. Agglomeration and dispersion processes of SWCNH in the polymer suspensions were studied using DLS technique and turbidimetry. The resulting properties of nanocomposite foils after solidification in water ambient were verified in various tests. The mechanical tensile properties (tensile strength, modulus and strain to fracture) of the nanocomposites before and after the dispersion process were compared. The nanocomposites obtained under optimally prepared suspension perform the highest strain to fracture in tensile test. Electrical resistivity and thermal conductivity of nanocomposites samples after appropriate dispersion of SWCNHs in the PAN suspension were also determined. The presence of SWCNH in the PAN suspension affects the structure of nanocomposites after solidification through changing structural ordering of the polymer. The study revealed that the polymeric suspensions prepared in optimum processing conditions contain the carbon aggregates the size of which correspond almost to the mean size of a dahlia flower-like structured particle, i.e., 50–250 nm and it was not possible to separate such particles into a single form of carbon nanohorn by the techniques used.

Keywords

Carbon Nanoparticles Polymer Suspension Dispersion Process Carbon Aggregate Carbon Nanohorns 

Notes

Acknowledgements

This study has been supported by the Polish Ministry of Science and Higher Education, project no NN 507402039.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Battiston S, Bolzan M, Fiameni S, Gerbasi R, Meneghetti M, Miorin E, Mortalo C, Pagura C (2009) Carbon 47:1321CrossRefGoogle Scholar
  2. 2.
    Dresselhaus MS, Dresselhaus G, Avouris Ph (2001) Carbon nanotubes synthesis structure properties and applications. Springer, BerlinGoogle Scholar
  3. 3.
    Bandow S, Kokai F, Takahashi K, Yudasaka M, Qin LC, Iijima S (2000) Chem Phys Lett 321:514CrossRefGoogle Scholar
  4. 4.
    Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Chem Phys Lett 309:165CrossRefGoogle Scholar
  5. 5.
    Tanaka A, Umeda K, Yudasaka M, Suzuki M, Ohana T, Yumura M, Iijima S (2005) Tribol Lett 19:135CrossRefGoogle Scholar
  6. 6.
    Tsuji H, Kawashima Y, Takikawa H, Tanaka S (2007) Polymer 48:4213CrossRefGoogle Scholar
  7. 7.
    Cato AD, Edie DD (2003) Carbon 41:1411CrossRefGoogle Scholar
  8. 8.
    Wangxi Z, Jie L, Gang W (2003) Carbon 41:2805CrossRefGoogle Scholar
  9. 9.
    Rahaman MSA, Ismail AF, Mustafa A (2007) Polym Degrad Stab 92:1421CrossRefGoogle Scholar
  10. 10.
    Wan LS, Xu ZK, Huang XJ, Che AF, Wang ZG (2006) J Membr Sci 277:157CrossRefGoogle Scholar
  11. 11.
    Min HS, Ko JM, Kim DW (2003) J Power Sources 119:469CrossRefGoogle Scholar
  12. 12.
    Min BG, Sreekumar TV, Uchida T, Kumar S (2005) Carbon 43:599CrossRefGoogle Scholar
  13. 13.
    Chae HG, Sreekumer TV, Uchida T, Kumar S (2005) Polymer 46:10925CrossRefGoogle Scholar
  14. 14.
    Jagannathan S, Liu T, Kumar S (2010) Compos Sci Technol 70:593CrossRefGoogle Scholar
  15. 15.
    Fraczek-Szczypta A, Bogun M, Blazewicz S (2009) J Mater Sci 44:4721. doi: https://doi.org/10.1007/s10853-009-3730-2 CrossRefGoogle Scholar
  16. 16.
    Murata K, Kaneko K, Kokai F, Takahashi K, Yudasaka M, Iijima S (2000) Chem Phys Lett 331:14CrossRefGoogle Scholar
  17. 17.
    Murata K, Kaneko K, Steele W, Kokai F, Takahashi K, Kasuya D, Hirahar K, Yudasaka M, Iijima S (2001) J Phys Chem B 105:10210CrossRefGoogle Scholar
  18. 18.
    Jorio A, Dresselhaus G, Dresselhaus MS (2008) Carbon nanotubes, Topics Appl Physics, vol 111. Springer-Verlag, Berlin Heidelberg, pp 605–629Google Scholar
  19. 19.
    Ham HT, Choi YS, Chung IJ (2005) J Colloid Interface Sci 286:216CrossRefGoogle Scholar
  20. 20.
    Tucknott R, Yaliraki SN (2002) Chem Phys 281:455CrossRefGoogle Scholar
  21. 21.
    Girifalco LA, Hodak M, Lee RS (2000) Phys Rev B 62:13104CrossRefGoogle Scholar
  22. 22.
    Coleman JN, Khan U, Blau WJ, Gunko YK (2006) Carbon 44:1624CrossRefGoogle Scholar
  23. 23.
    Xie XL, Mai YW, Zhou XP (2005) Mat Sci Eng R 49:89CrossRefGoogle Scholar
  24. 24.
    Sreekumar TV, Chandra L, Srivastava A, Kumar S (2007) Carbon 45:1105CrossRefGoogle Scholar
  25. 25.
    Owens FJ (2005) Mat Lett 59:3720CrossRefGoogle Scholar
  26. 26.
    Vaisman L, Wagner HD, Marom G (2006) Adv Colloid Interface Sci 128–130:37CrossRefGoogle Scholar
  27. 27.
    Strano MS, Moore VC, Miller MK, Allen MJ, Haroz EH, Kittrell C, Hauge RH, Smalley RE (2003) J Nanosci Nanotechnol 3:81CrossRefGoogle Scholar
  28. 28.
    Bose S, Bhattacharyya AR, Kulkarni AR, Pötschke P (2009) Compos Sci Technol 69:365CrossRefGoogle Scholar
  29. 29.
    Bose S, Khare RA, Moldenaers P (2010) Polymer 51:975CrossRefGoogle Scholar
  30. 30.
    Mikolajczyk T, Rabiej S, Szparaga G, Bogun M, Fraczek-Szczypta A, Blazewicz S (2009) Fibres Text East Eur 17:13Google Scholar
  31. 31.
    Mikolajczyk T, Szparaga G, Bogun M, Fraczek-Szczypta A, Blazewicz S (2010) J Appl Polym Sci 115:3628CrossRefGoogle Scholar
  32. 32.
    Fraczek-Szczypta A (2009) Doctor’s thesis, KrakowGoogle Scholar
  33. 33.
    Fraczek A, Blazewicz S (2009) J Phys Conf Ser 146:012005-1CrossRefGoogle Scholar
  34. 34.
    Fraczek A, Blazewicz S, Bogun M, Szparaga G (2007) Karbo 4:201Google Scholar
  35. 35.
    Guo H, Sreekumar TV, Liu T, Minus M, Kumar S (2005) Polymer 46:3001CrossRefGoogle Scholar
  36. 36.
    Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM (2008) J Colloid Interface Sci 328:421CrossRefGoogle Scholar
  37. 37.
    Velasco-Santos C, Martınez-Hernandez AL, Fisher F, Ruoff R, Castano VM (2003) J Phys D Appl Phys 36:1423CrossRefGoogle Scholar
  38. 38.
    Kataura H, Kumazawa Y, Maniwa Y, Umezub I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Synth Met 103:2555CrossRefGoogle Scholar
  39. 39.
    Murakami Y, Einarsson E, Edamura T, Maruyama S (2005) Phys Rev Lett 94:087402-1CrossRefGoogle Scholar
  40. 40.
    Kazaoui S, Minami N, Kataura H, Achiba Y (2001) Synth Met 121:1201CrossRefGoogle Scholar
  41. 41.
    Lian Y, Maeda Y, Wakahara T, Nakahodo T, Akasaka T, Kazaoui S, Minami N, Shimizu T, Tokumoto H (2005) Carbon 43:2750CrossRefGoogle Scholar
  42. 42.
    Kang B, Dai Y, Chang S, Chen D (2008) Carbon 46:974CrossRefGoogle Scholar
  43. 43.
    Wu D, Wu L, Zhou W, Zhang M, Yang T (2010) Polym Eng Sci 50:1721CrossRefGoogle Scholar
  44. 44.
    Zhang H, Xu L, Yang F, Geng L (2010) Carbon 48:688CrossRefGoogle Scholar
  45. 45.
    Fan JH, Wan MX, Zhu DB (1997) Polym Bull 1:22Google Scholar
  46. 46.
    Ghosh P, Chakrabarti A (2000) Eur Polym J 36:1043CrossRefGoogle Scholar
  47. 47.
    Thostenson ET, Chou TW (2006) Carbon 44:3022CrossRefGoogle Scholar
  48. 48.
    Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Polymer 44:5893CrossRefGoogle Scholar
  49. 49.
    Bryning MB, Islam MF, Kikkawa JM, Yody AG (2005) Adv Mater 17:1186CrossRefGoogle Scholar
  50. 50.
    Grunlan JC, Mehrabi AR, Bannon MV, Bahr JL (2004) Adv Mater 16:150CrossRefGoogle Scholar
  51. 51.
    Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006) Carbon 44:778CrossRefGoogle Scholar
  52. 52.
    Anoop Anand K, Agarwal US, Anuya N, Rani J (2007) Eur Polym J 43:2279CrossRefGoogle Scholar
  53. 53.
    Li C, Thostenson ET, Chou TW (2008) Compos Sci Technol 68:1227CrossRefGoogle Scholar
  54. 54.
    Berber S, Kwon YK, Tomanek D (2000) Phys Rev Lett 84:4613CrossRefGoogle Scholar
  55. 55.
    Hong WT, Tai NH (2008) Diam Relat Mater 17:1577CrossRefGoogle Scholar
  56. 56.
    Song YS, Youn JR (2006) Carbon 44:710CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://doi.org/creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Faculty of Materials Science and Ceramics, Department of BiomaterialsAGH-University of Science and Technology in KrakowKrakowPoland

Personalised recommendations