Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5615–5620 | Cite as

Fabrication of photocatalytic PVA–TiO2 nano-fibrous hybrid membrane using the electro-spinning method

  • Nguyen Thuy Ba Linh
  • Kap-Ho Lee
  • Byong-Taek LeeEmail author
Article

Abstract

Nano-fiber membranes hold great promise for use in filtration applications. In this study, a photocatalytic polyvinyl alcohol (PVA)/TiO2 composite polymer membrane was successfully synthesized at different TiO2 concentrations (20, 30, 40, and 50%) using the electro-spinning method. The parameters of electro-spinning including electrical field, tip-to-collector distance, and feed rate were optimized for fabrication process. The diameter of the electro-spun PVA–TiO2 fibers and average size of the TiO2 nano-particles loaded in the PVA nano-fibers ranged from 100 to 150 nm and 15 to 30 nm, respectively. X-ray diffraction analysis indicated that the main crystal structure was of the anatase type even though small rutile peaks were also observed for the PVA–TiO2 membrane. TiO2 nano-particles were embedded in the PVA fiber and were dispersed linearly along the fiber direction. As the amount of TiO2 loaded in PVA increased, the tensile strength also increased while the tensile strain significantly decreased. Also, when the TiO2 content was increased from 20 to 50%, the photocatalytic activity of the PVA–TiO2 membranes increased.

Keywords

TiO2 Photocatalytic Activity High Resolution Transmission Electron Microscopy Methyl Orange High Resolution Transmission Electron Microscopy 

References

  1. 1.
    Barhate RS, Ramakrishna S (2007) J Membr Sci 296:1CrossRefGoogle Scholar
  2. 2.
    Byoung Chan K et al (2005) Nanotechnology 16:S382CrossRefGoogle Scholar
  3. 3.
    Jonggeon J, Lee KH (1999) J Appl Polym Sci 72:1755CrossRefGoogle Scholar
  4. 4.
    Qin XH, Wang SY (2008) J Appl Polym Sci 109:951CrossRefGoogle Scholar
  5. 5.
    Ye P, Xu ZK, Wu J, Innocent C, Seta P (2005) Macromolecules 39:1041CrossRefGoogle Scholar
  6. 6.
    Greiner A, Wendorff JH (2007) Angew Chem Int Ed 46:5670CrossRefGoogle Scholar
  7. 7.
    Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J, Teo WE (2010) J Mater Sci 45(23):6283. doi: https://doi.org/10.1007/s10853-010-4509-1 CrossRefGoogle Scholar
  8. 8.
    Eda G, Shivkumar S (2006) J Mater Sci 41:5704. doi: https://doi.org/10.1007/s10853-006-0069-9 CrossRefGoogle Scholar
  9. 9.
    Kong C, Lee T, Lee S, Kim H (2007) J Mater Sci 42:8106. doi: https://doi.org/10.1007/s10853-007-1734-3 CrossRefGoogle Scholar
  10. 10.
    Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) J Membr Sci 281:581CrossRefGoogle Scholar
  11. 11.
    Wang H, Zheng G, Sun DH (2007) In: Proceedings of the 7th IEEE, international conference on nanotechnology, Hong Kong, August 2–5Google Scholar
  12. 12.
    Qin XH, Wang SY (2006) J Appl Polym Sci 102:1285CrossRefGoogle Scholar
  13. 13.
    Zhang L, Menkhaus TJ, Fong H (2008) J Membr Sci 319:176CrossRefGoogle Scholar
  14. 14.
    Brown RC (1993) Air filtration. Pergamon Press, OxfordGoogle Scholar
  15. 15.
    Agarwal S, Wendorff JH, Greiner A (2008) Polymer 49:5603CrossRefGoogle Scholar
  16. 16.
    Nguyen TH, Lee BT (2010) J Mater Sci Mater M 21:1969CrossRefGoogle Scholar
  17. 17.
    Nguyen TH, Lee KH, Lee BT (2010) Mat Sci Eng C Bio S 30:944CrossRefGoogle Scholar
  18. 18.
    Sill TJ, von Recum HA (2008) Biomaterials 29:1989CrossRefGoogle Scholar
  19. 19.
    Kanjwal Muzafar A, Barakat Nasser AM, Sheikh Faheem A, Kim HY (2010) J Mater Sci 45(5):1272. doi: https://doi.org/10.1007/s10853-009-4078-3 CrossRefGoogle Scholar
  20. 20.
    Chandrasekar R, Zhang L, Howe JY, Hedin NE, Zhang Y, Fong H (2009) J Mater Sci 44(5):1198. doi: https://doi.org/10.1007/s10853-008-3201-1 CrossRefGoogle Scholar
  21. 21.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  22. 22.
    Lin J, Yu JC (1998) J Photochem Photobiol A Chem 116:63CrossRefGoogle Scholar
  23. 23.
    Wold A (1993) Chem Mater 5:280CrossRefGoogle Scholar
  24. 24.
    Yamaguchi K, Inumaru K, Oumi Y, Sano T, Yamanaka S (2009) Microporous Mesoporous Mater 117:350CrossRefGoogle Scholar
  25. 25.
    Zhong JB, Lu Y, Jiang WD, Meng QM, He XY, Li JZ, Chen YQ (2009) J Hazard Mater 168:1632CrossRefGoogle Scholar
  26. 26.
    Luo Q, Li X, Wang D, Wang Y, An J (2011) J Mater Sci 46:1646. doi: https://doi.org/10.1007/s10853-010-4981-7 CrossRefGoogle Scholar
  27. 27.
    Doh SJ, Kim C, Lee SG, Lee SJ, Kim H (2008) J Hazard Mater 154:118CrossRefGoogle Scholar
  28. 28.
    Molinari R, Borgese M, Drioli E, Palmisano L, Schiavello M (2002) Catal Today 75:77CrossRefGoogle Scholar
  29. 29.
    Molinari R, Palmisano L, Drioli E, Schiavello M (2002) J Membr Sci 206:399CrossRefGoogle Scholar
  30. 30.
    He CH, Gong J (2003) Polym Degrad Stab 81:117CrossRefGoogle Scholar
  31. 31.
    Lee BT, Han JK, Gain AK, Lee KH, Saito F (2006) Mater Lett 60:2101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nguyen Thuy Ba Linh
    • 1
  • Kap-Ho Lee
    • 2
  • Byong-Taek Lee
    • 1
    Email author
  1. 1.Department of Biomedical Eng. & Mater., School of MedicineSoonchunhyang UniversityCheonanSouth Korea
  2. 2.School of Advanced Materials EngineeringChungnam National UniversityDaejeonSouth Korea

Personalised recommendations