Journal of Materials Science

, Volume 46, Issue 16, pp 5568–5580 | Cite as

Influence of pH on the synthesis and characterization of CuO powder for thick film room-temperature NH3 gas sensor

  • Iqbal SinghEmail author
  • R. K. Bedi


CuO films of 51 μm thickness have been fabricated from nanocrystalline powder, which has been synthesized by a sol–gel auto-combustion method at different pH values of the precursor solution. Studies reveal that the pH value of the precursor solution strongly affects the decomposition rate of the metal–citrate complex formed by precursors (cupric nitrate and citric acid). Structural characterization of the powder samples shows a considerable change in agglomeration behavior, crystallite size and strain with variation in pH value of the precursor solution. Studies show that high pH reaction conditions results in the production of highly porous CuO nanoparticles with lowest crystallite size of 27 nm. Thick films of the synthesized material show an extremely high response of 0.941 to few parts per million level of ammonia at room temperature as well as possesses good stability for a long period of time. The adsorption of ammonia on the sensor surface obeys Elovich equation and the reaction kinetics followed is of first order. The lowest potential barrier of 0.50 MΩ and highest rate constant of 0.0136 s−1 have been found for ammonia adsorption on the sensor surface in case of film fabricated from CuO powder synthesized at high pH value of precursor.


Cu2O Precursor Solution Elovich Equation Post Thermal Treatment Cupric Nitrate 



The authors would like to thank the University Grant Commission for the financial support to carry out the Minor Research Project. The authors also thank Director Indian Institute of Technology Roorkee and Central Instrumentation Laboratory, Panjab University, Chandigarh for providing FESEM, EDAX, and XRD facilities. We gratefully acknowledge instrumentation facility provided by Gurpreet Singh (Samrala) to carry out the electrical characterization.


  1. 1.
    Shek CH, Lai JKL, Gu TS, Lin GM (1997) Nanostruct Mater 8(5):605Google Scholar
  2. 2.
    Zhou K, Wang R, Xu B, Li Y (2006) Nanotechnology 17:3939Google Scholar
  3. 3.
    Hu Y, Zhou X, Han Q, Cao Q, Huang Y (2003) Mater Sci Eng B 99:41Google Scholar
  4. 4.
    Sukhorukov YP, Gizhevskii BA, Mostovshchikova EV, Yermakov Ye A, Tugushev SN, Kozlov EA (2006) Tech Phys Lett 32:132Google Scholar
  5. 5.
    Zhu YW, Yu T, Cheong FC, Xu XJ, Lim CT, Tan VBC, Thong JTL, Sow CH (2005) Nanotechnology 16:88Google Scholar
  6. 6.
    Haung LS, Yang SG, Li T, Gu BX, Du YW, Lu YN, Shi SZ (2004) J Cryst Growth 260:130Google Scholar
  7. 7.
    Guan H, Shao C, Chen B, Gong J, Yang X (2003) Inorg Chem Commun 6:1409Google Scholar
  8. 8.
    Li D, Leung YH, Djurisic AB, Liu ZT, Xie MH, Gao J, Chan WK (2005) J Cryst Growth 282:105Google Scholar
  9. 9.
    Wijesundera RP, Hidaka M, Koga K, Sakai K, Siripda W (2006) Thin Solid Films 500:241Google Scholar
  10. 10.
    Lee SY, Mettlach N, Nguyen N, Sun YM, White JM (2003) Appl Surf Sci 206:102Google Scholar
  11. 11.
    Fernandez AI, Calleja A, Chimenos JM, Fernandez MA, Capdevila XG, Serarra M, Xuriguera H, Espiell F (2005) J Sol–Gel Sci Technol 36:11Google Scholar
  12. 12.
    Morales J, Sanchez L, Martin F, Ramos-Barrado JR, Sanchenz M (2004) Electrochim Acta 49:4589Google Scholar
  13. 13.
    Kosugi T, Kaneku S (1998) J Am Ceram Soc 81:3117Google Scholar
  14. 14.
    Papadimitropoulos G, Vourdas N, Vamvaskas VE, Dava Zoglov D (2006) Thin Solid Films 515:2428Google Scholar
  15. 15.
    Zhang Y, Wang S, Qian Y, Zhang Z (2006) Solid State Sci 8:462Google Scholar
  16. 16.
    Pathak LC, Singh TB, Das S, VermaA K, Ramachandrarao P (2002) Mater Lett 57(2):380Google Scholar
  17. 17.
    Zhou J, Wang Y, Zhao F, Wang Y, Zhang Y, Yang L (2006) J Lumin 119:248Google Scholar
  18. 18.
    Hasab MG, Ebrahimi SAS, Badiei A (2007) J Eur Ceram Soc 27:3637Google Scholar
  19. 19.
    Hiremath VA, Venkataraman A (2003) Bull Mater Sci 26:391Google Scholar
  20. 20.
    Kikkawa S (2005) J Am Ceram Soc 88(2):308Google Scholar
  21. 21.
    Lagashetty A, Venkataraman A (2004) Bull Mater Sci 27:491Google Scholar
  22. 22.
    Peng T, Yang H, Pu X, Hu B, Jiang Z, Yan C (2004) Mater Lett 58(3–4):352Google Scholar
  23. 23.
    Purohit RD, Saha S, Tyagi AK (2006) Ceram Int 32(2):143Google Scholar
  24. 24.
    Roya SC, Sharmaa GL, Bhatnagara MC, Manchandab R, Balakrishnanb VR, Samanta SB (2004) Appl Surf Sci 236:306Google Scholar
  25. 25.
    Wu KH, Yu CH, Chang YC, Horng DN (2004) Solid State Chem 177:4119Google Scholar
  26. 26.
    Vajargah SH, Madaah Hosseini HR, Nemati ZA (2006) Mater Sci Eng B 129:211Google Scholar
  27. 27.
    Yue Z, Li L, Zhou J, Zhang H, Gui Z (1999) Mater Sci Eng B 64:68Google Scholar
  28. 28.
    Bedi RK, Singh I (2009) Curr Nanosci 5(3):273Google Scholar
  29. 29.
    Huang J, Zhuang H, Li W (2003) Mater Res Bull 38:149Google Scholar
  30. 30.
    Klug HP, Alexander LE (1974) X-ray diffraction procedure for polycrystalline and amorphous materials, 2nd edn. Wiley, New York, p 687Google Scholar
  31. 31.
    Serin N, Serin T, Horzum S, Celik Y (2005) Semicond Sci Technol 20:398Google Scholar
  32. 32.
    Xu G, Ma H, Zhong M, Zhou J, Yue Y, He Z (2006) J Magn Magn Mater 301:383Google Scholar
  33. 33.
    Williamson GK, Hall WH (1953) Acta Mater 1:22Google Scholar
  34. 34.
    Ramgir NS, Hwang YK, Mulla IS, Chang J (2006) Solid State Sci 8:359Google Scholar
  35. 35.
    Kovacheva D, Godjov H, Petrov K, Mandal S, Lazarraga MG, Pascural L, Amarilla JM, Rojas RM, Herrero P, Rojo JM (2002) J Mater Chem 12:1184Google Scholar
  36. 36.
    Marjan M, Klementina Z, Jadran M (2002) J Power Sources 106:178Google Scholar
  37. 37.
    Riahi-Nooria N, Sarraf-Mamooryb R, Alizadehb P, Mehdikhani A (2008) J Ceram Process Res 9(3):246Google Scholar
  38. 38.
    Park CO, Akbar SA (2003) J Mater Sci 38:4611. doi: Google Scholar
  39. 39.
    Hakim A, Hossain J, Khan KA (2009) Renew Energy 34:2625Google Scholar
  40. 40.
    Devan RS, Kolekar YD, Chougule BK (2006) J Phys Condens Mater 18:9809Google Scholar
  41. 41.
    Bouderbala M, Hamzaoui S, Adnane M, Sahraoui T, Zerdali M (2009) Thin Solid Film 517(5):1572Google Scholar
  42. 42.
    Perez-Ramos ME, Manzano-Ramirez A, Vorobiev PY, Horiey PP, Vorobiev YV, Gonzalez-Hernandez J (2003) Inorg Mater 39:37Google Scholar
  43. 43.
    Jimenez I, Centeno MA, Scotti R, Morazzoni F, Arbiol J, Cornet A, Morante JR (2004) J Mater Chem 14:2412Google Scholar
  44. 44.
    Bedi RK, Singh I (2010) Appl Mater Interfaces 2(5):1361Google Scholar
  45. 45.
    Tongpool R, Yoriya S (2005) Thin Solid Films 477:148Google Scholar
  46. 46.
    Juang RS, Chen ML (1997) Ind Eng Chem Res 36:813Google Scholar
  47. 47.
    Zeldowitsch J (1934) Acta Physicochim URS 1:364Google Scholar
  48. 48.
    Chien SH, Clayton WR (1980) Soil Sci Soc Am J 44:265Google Scholar
  49. 49.
    Richard IM (1996) Principles of adsorption and reaction on solid surfaces. Wiley-Interscience, New York, p 519Google Scholar
  50. 50.
    Khun Khun K, Mahajan A, Bedi RK (2010) Chem Phys Lett 492:119Google Scholar
  51. 51.
    Alexey AT, Gregory PH, Brent TM, John WA (2003) Sens Actuators B 93:126Google Scholar
  52. 52.
    Bejamin JH, Nikolai K, Ganhua L, I-Kuan L, Junhong C, Zin Z (2010) J Phys Chem C 114:2440Google Scholar
  53. 53.
    Kamble RB, Mathe VL (2008) Sens Actuators B 131:205Google Scholar
  54. 54.
    Patil DR, Patil LA, Patil PP (2007) Sens Actuators B 126:368Google Scholar
  55. 55.
    Suryawanshi DN, Patil DR, Patil LA (2008) Sens Actuators B 134:579Google Scholar
  56. 56.
    Deshpande NG, Gudage YG, Sharma R, Vyas JC, Kim JB, Lee YP (2009) Sens Actuators B 138:76Google Scholar
  57. 57.
    Chaudhari GN, Jagtap SV, Gedam NN, Pawar MJ, Sangawar VS (2009) Talanta 78:1136Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsKhalsa CollegeAmritsarIndia
  2. 2.Material Science Laboratory, Department of PhysicsGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations