Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7134–7143 | Cite as

Synthesis, characterization, and catalytic application of Au/ZnO nanocomposites prepared by coprecipitation

  • B. DonkovaEmail author
  • P. VasilevaEmail author
  • D. Nihtianova
  • N. Velichkova
  • P. Stefanov
  • D. Mehandjiev
Size Dependent Effects

Abstract

In this study, Au/ZnO nanocomposites of different gold contents (0.8, 2.5, and 9%) and specific surface areas (from 41 to 51 m2/g) were synthesized via a coprecipitation method. The pure ZnO was obtained at the same experimental conditions. The samples were characterized by XRD, SEM, TEM, HRTEM, and XPS. The influence of gold nanoparticles (Au-NPs) loading on the catalytic activity of Au/ZnO nanocomposite was studied in the model reaction of CO oxidation. Spherical shape and homogeneous distribution of Au-NPs were observed in all samples prepared. The average size of Au-NPs in the obtained catalysts are almost the same (about 4 nm) allowing the studied effect to be manifested. The decrease of intrinsic catalytic activity of the coprecipitated Au/ZnO nanocomposites follows the sequence 2.5, 9, and 0.8% Au, as corresponding to the decrease of relative surface content of Au-NPs. It could be suggested that the catalytic activity is noticeably influenced by the distribution of Au-NPs between the bulk and surface of catalysts.

Keywords

Select Area Electron Diffraction Gold Content Coprecipitation Method Crystal Lattice Parameter Good Catalytic Performance 

Notes

Acknowledgements

This study has been financially supported by the Scientific Research Fund of Sofia University, Bulgaria (Project 014/2010). The authors are thankful to Dr. Peter Tzvetkov (Bulgarian Academy of Sciences) for interpretation of the XRD data.

References

  1. 1.
    Haruta M, Sano H, Kobayashi T (1987) US Patent 4698324Google Scholar
  2. 2.
    Haruta M, Kobayashi T, Sano H, Yamada M (1987) Chem Lett 16:405–408CrossRefGoogle Scholar
  3. 3.
    Hutchings GJ (1985) J Catal 96:292CrossRefGoogle Scholar
  4. 4.
    Haruta M, Hutchings GJ (2005) Appl Catal A Gen 291:2CrossRefGoogle Scholar
  5. 5.
    Haruta M (1997) Catal Today 36:153CrossRefGoogle Scholar
  6. 6.
    Choudhary TV, Goodman DW (2002) Top Catal 21:25CrossRefGoogle Scholar
  7. 7.
    Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319CrossRefGoogle Scholar
  8. 8.
    Chen MS, Goodman DW (2006) Catal Today 111:22CrossRefGoogle Scholar
  9. 9.
    Cuenya BR (2010) Thin Solid Films 518:3127CrossRefGoogle Scholar
  10. 10.
    Bond GC, Louis C, Thompson DT (2006) In: Catalysis by gold. Imperial College Press, LondonGoogle Scholar
  11. 11.
    Grisel R, Weststrate KJ, Gluhoi A, Nieuwenhuys BE (2002) Gold Bull 35:39CrossRefGoogle Scholar
  12. 12.
    Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83CrossRefGoogle Scholar
  13. 13.
    Glaspell G, Hassan HMA, Elzatahry A, Fuoco L, Radwan NRE, El-Shall MS (2006) J Phys Chem B 110:21387CrossRefGoogle Scholar
  14. 14.
    Carabineiro SAC, Machado BF, Bacsa RR, Serp P, Dražić G, Faria JL, Figueiredo JL (2010) J Catal 273:191CrossRefGoogle Scholar
  15. 15.
    Boccuzzi F, Chiorino A, Tsubota S, Haruta M (1994) Catal Lett 29:225CrossRefGoogle Scholar
  16. 16.
    Hutchings GJ, Siddiqui MRH, Burrows A, Kiely CJ, Whyman R (1997) J Chem Soc Faraday Trans 93:187CrossRefGoogle Scholar
  17. 17.
    Wang GY, Zhang WX, Lian HL, Jiang DZ, Wu TH (2003) Appl Catal A Gen 239:1CrossRefGoogle Scholar
  18. 18.
    Al-Sayari S, Carley AF, Taylor SH, Hutchings GJ (2007) Top Catal 44:123CrossRefGoogle Scholar
  19. 19.
    Souza KR, de Lima AFF, de Sousa FF, Appel LG (2008) Appl Catal A Gen 340:440CrossRefGoogle Scholar
  20. 20.
    Naknam P, Luengnaruemitchai A, Wongkasemjit S (2009) Energy Fuels 23:5084CrossRefGoogle Scholar
  21. 21.
    Naknam P, Luengnaruemitchai A, Wongkasemjit S (2009) Int J Hydr Energy 34:9838CrossRefGoogle Scholar
  22. 22.
    Tabakova T, Idakiev V, Andreeva D, Mitov I (2000) Appl Catal A Gen 202:91CrossRefGoogle Scholar
  23. 23.
    Wu JJ, Tseng CH (2006) Appl Catal B Environ 66:51CrossRefGoogle Scholar
  24. 24.
    Li C, Li L, Du Z, Yu H, Xiang Y, Li Y, Cai Y, Wang T (2008) Nanotechnology 19:035501 (4 pp)CrossRefGoogle Scholar
  25. 25.
    Hongsith N, Viriyaworasakul C, Mangkorntong P, Mangkorntong N, Choopun S (2008) Ceram Int 34:823CrossRefGoogle Scholar
  26. 26.
    Wongrat E, Pimpang P, Choopun S (2009) Appl Surf Sci 256:968CrossRefGoogle Scholar
  27. 27.
    Boccuzzi F, Chiorino A, Tsubota S, Haruta M (1995) Sens Actuators B Chem 25:540CrossRefGoogle Scholar
  28. 28.
    Chang SJ, Hsueh TJ, Chen IC, Huang BR (2008) Nanotechnology 19:175502 (5 pp)CrossRefGoogle Scholar
  29. 29.
    Joshi RK, Hu Q, Alvi F, Joshi N, Kumar A (2009) J Phys Chem C 113:16199CrossRefGoogle Scholar
  30. 30.
    Wongchoosuk C, Choopun S, Tuantranont A, Kerdcharoen T (2009) Mater Res Innov 13:185CrossRefGoogle Scholar
  31. 31.
    Haruta M, Sano H (1984) Shokubai (Catalyst) 26:140Google Scholar
  32. 32.
    Hao Z, Fen L, Lu GQ, Liu J, An L, Wang H (2001) Appl Catal A Gen 213:173CrossRefGoogle Scholar
  33. 33.
    Kraus V, Nolze J (2000) Powder cell, version 2.4Google Scholar
  34. 34.
    Chen CC, Liu P, Lu CH (2008) Chem Eng J 144:509CrossRefGoogle Scholar
  35. 35.
    Moulder TF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden PrairieGoogle Scholar
  36. 36.
    Veith GM, Lupini AR, Pennycook SJ, Ownby GW, Dudney NJ (2005) J Catal 231:151CrossRefGoogle Scholar
  37. 37.
    Do Y, Choi JS, Kim SK, Sohn Y (2010) Bull Korean Chem Soc 31:2170CrossRefGoogle Scholar
  38. 38.
    Radnik J, Mohr C, Claus P (2003) Phys Chem Chem Phys 5:172CrossRefGoogle Scholar
  39. 39.
    Futsuhara M, Yoshioka K, Takai O (1998) Thin Solid Films 322:274CrossRefGoogle Scholar
  40. 40.
    Nickolov R, Tsoncheva T, Mehandjiev D (2002) Fuel 81:203CrossRefGoogle Scholar
  41. 41.
    Phala NS, Klatt G, van Steen E, French SA, Sokol AA, Catlow CRA (2005) Phys Chem Chem Phys 7:2440CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of ChemistryUniversity of SofiaSofiaBulgaria
  2. 2.Institute of Mineralogy and CrystallographyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Institute of CatalysisBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations