Journal of Materials Science

, Volume 46, Issue 22, pp 7074–7081 | Cite as

Nanomodified NiFe- and NiFeP-carbon felt as anode electrocatalysts in yeast-biofuel cell

  • Yolina HubenovaEmail author
  • Rashko Rashkov
  • Vasil Buchvarov
  • Sofia Babanova
  • Mario Mitov
Size Dependent Effects


The improvement of the electron transfer from the microorganisms to the anode is considered to be one of the most important factors for increasing the biofuel cell efficiency. In our recent study, a significant improvement of the yeast-biofuel cell output was achieved by application of Ni-modified carbon felt anodes. In this study, the electrocatalytic properties of new nanomodified carbon materials were investigated. Nickel–iron and nickel–iron–phosphorous nanostructures were electrodeposited on carbon felt by means of pulse plating technique. The produced materials were analyzed for cytotoxicity and applied as anodes in a double-chamber mediatorless yeast-biofuel cell. The use of all modified electrodes resulted in increase of the biofuel cell outputs in comparison with those obtained with non-modified carbon felt; however, higher maximum power density values, exceeding up to 5-folds that of the control, have been achieved with NiFeP-carbon felt anodes. The observed electrocatalytic effects were connected with the particular elemental content, size distribution, and morphology of modified materials as well as with a hypothesis for switching on adaptive mechanisms as a response to Ni and Fe presence, resulting in facilitated electron transfer across the cell membrane.


Yeast Cell Modify Electrode Microbial Fuel Cell Modify Material Biofuel Cell 



Microbial fuel cell


Scanning electron microscopy


Energy dispersion X-ray


Cyclic voltammetry


Optical density at 600 nm


Non-modified electrode


Galvanostatically modified NiFe-carbon felt


Potentiostatically modified NiFe-carbon felt


Galvanostatically modified NiFeP-carbon felt


Potentiostatically modified NiFeP-carbon felt


Yeast extract-peptone-fructose



This study was funded by the National Science Fund of Bulgaria through contract D002-163/2008 and partially supported by the German Research Society (DFG) within a joint research project between the Institute of Physical Chemistry of the BAS, Bulgaria, and the Research Institute for Noble Metals and Chemistry of Metals, Schwabisch Gmund, Germany. The authors gratefully thank Danail Georgiev from Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria; Elitsa Chorbadjijska and Georgi Hristov from South-West University “Neofit Rilsky”, Blagoevgrad, Bulgaria for their support during the implementation of the study.


  1. 1.
    Du Z, Li H, Gu T (2007) Biotechnol Adv 25:464CrossRefGoogle Scholar
  2. 2.
    Rabaey K, Verstraete W (2005) Trends Biotechnol 23:291CrossRefGoogle Scholar
  3. 3.
    Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biosens Bioelectron 21:2015CrossRefGoogle Scholar
  4. 4.
    Schröder U (2007) Phys Chem Chem Phys 9:2619CrossRefGoogle Scholar
  5. 5.
    Cheng S, Liu H, Logan BE (2006) Environ Sci Technol 40:2426CrossRefGoogle Scholar
  6. 6.
    Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Appl Environ Microbiol 70:5373CrossRefGoogle Scholar
  7. 7.
    Davis F, Higson SPJ (2007) Biosens Bioelectron 22:1224CrossRefGoogle Scholar
  8. 8.
    Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Environm Sci Technol 40:5181CrossRefGoogle Scholar
  9. 9.
    Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, Nardo P, Traversa E (2008) Energy Environ Sci 1:417CrossRefGoogle Scholar
  10. 10.
    Chiao M, Lam KB, Lin L (2006) J Micromech Microeng 16:2547CrossRefGoogle Scholar
  11. 11.
    Walker AL, Walker CW (2006) J Power Sour 160:123CrossRefGoogle Scholar
  12. 12.
    Gunawardena A, Fernando S, To F (2008) Int J Mol Sci 9:1893CrossRefGoogle Scholar
  13. 13.
    Ganguli R, Dunn B (2009) Fuel Cells 9:44CrossRefGoogle Scholar
  14. 14.
    Haslett ND, Rawson FJ, Barriere FEE, Kunze G, Pasco N, Gooneratne R, Baronian KHR (2010) Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosens Bioelectron doi: CrossRefGoogle Scholar
  15. 15.
    Prasad D, Arun S, Murugesan M, Padmanaban S, Satyanarayanan RS, Berchmans S, Yegnaraman V (2007) Biosens Bioelectron 22:2604CrossRefGoogle Scholar
  16. 16.
    Hubenova Y, Rashkov R, Buchvarov V, Arnaudova M, Babanova S, Mitov M (2010) Improvement of yeast-biofuel cell output by electrode modifications. Ind Eng Chem Res. doi: CrossRefGoogle Scholar
  17. 17.
    Hubenova Y, Mitov M (2010) Bioelectroch 78:57CrossRefGoogle Scholar
  18. 18.
    Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993) Arch Microbiol 159:336CrossRefGoogle Scholar
  19. 19.
    Kim BH, Kim HJ, Hyun MS, Park DH (1999) J Microbiol Biotechn 9:127Google Scholar
  20. 20.
    Bond DR, Lovely DR (2003) Appl Environ Microbiol 69:1548CrossRefGoogle Scholar
  21. 21.
    Barton BE, Whaley CM, Rauchfuss TB, Gray DL (2009) J Am Chem Soc 131:6942CrossRefGoogle Scholar
  22. 22.
    Loescher S, Burgdorf T, Buhrke T, Friedrich B, Dau H, Haumann M (2005) Biochem Soc Trans 33:25CrossRefGoogle Scholar
  23. 23.
    Vignais PM, Colbeau A (2004) Curr Issues Mol Biol 6:159Google Scholar
  24. 24.
    Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) Structure 7:557CrossRefGoogle Scholar
  25. 25.
    Albracht SPJ (1994) BBA 1188:167Google Scholar
  26. 26.
    Teixeira VH, Baptista AM, Soares CM (2006) Biophys J 91:2035CrossRefGoogle Scholar
  27. 27.
    Blaiseau PL, Seguin A, Camadro JM, Lesuisse E (2010) In: Cornelis P, Andrews SC (eds) Iron uptake and homeostasis in microorganisms. Caister Academic Press, NorfolkGoogle Scholar
  28. 28.
    Neilands JB (1995) J Biol Chem 270:26723CrossRefGoogle Scholar
  29. 29.
    Dobrinas S, Soceanu A, Gheorghiu CB, Tanase M (2010) Ovidius Univ Ann Chem 21:35Google Scholar
  30. 30.
    Sridharan K, Sheppard K (1997) J Mater Process Technol 68:109CrossRefGoogle Scholar
  31. 31.
    Fomina M, Burford E, Gadd G (2005) In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yolina Hubenova
    • 1
    Email author
  • Rashko Rashkov
    • 2
  • Vasil Buchvarov
    • 2
  • Sofia Babanova
    • 3
  • Mario Mitov
    • 3
  1. 1.Department of Biochemistry and MicrobiologyPlovdiv UniversityPlovdivBulgaria
  2. 2.Institute of PhysicochemistryBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Department of ChemistrySouth-West UniversityBlagoevgradBulgaria

Personalised recommendations