Advertisement

Journal of Materials Science

, Volume 46, Issue 16, pp 5512–5518 | Cite as

Effect of Nb and Nb2O5 additives on mechano-thermal processing of TiAl/Al2O3 nano-composite

  • S. AlamolhodaEmail author
  • S. Heshmati-Manesh
  • A. Ataie
  • S. Sheibani
Article

Abstract

In this research, TiAl matrix nano-composite with Al2O3 reinforcement was obtained by mechanical activation of TiO2 and Al powder mixture and its subsequent heat treatment. Effect of Nb and/or Nb2O5 additions on the process was investigated. Structural changes and thermal behavior of the samples were evaluated by X-ray diffraction and differential thermal analysis, respectively. Moreover, the microstructure was characterized by transmission electron microscopy. The results confirmed the partial dissolution of Nb in Al during the milling stage in the Nb-added samples. The reaction mechanism during heat treatment in the sample without any additives was a two-stage process that was quite similar to the sample with Nb addition. However, Nb2O5 addition led to the progress of reaction through a single stage and with a higher rate. Both additives promoted formation of the Ti3Al phase in the final products. The results confirmed the formation of nano-sized Al2O3 particles in a nano-crystalline Ti–Al matrix with a mean crystallite size of 30 nm.

Keywords

Crystallite Size Mechanical Alloy Nb2O5 Al3Ti TiAl Alloy 

Notes

Acknowledgements

The financial support of this study by the Iran National Science Foundation and Iran Nanotechnology Initiative Council is gratefully acknowledged.

References

  1. 1.
    Nowak R, Lanata T, Sobczak N, Ricci E, Giuranno D, Novakovic R, Holland-Moritz D, Egry I (2010) J Mater Sci 45:1993. doi: https://doi.org/10.1007/s10853-009-4061-z CrossRefGoogle Scholar
  2. 2.
    Simo˜es S, Viana F, Ventzke V, Kocak M, Ramos AS, Vieira MT, Vieira MF (2010) J Mater Sci 45:4351. doi: https://doi.org/10.1007/s10853-010-4303-0 CrossRefGoogle Scholar
  3. 3.
    Zan X, He Y, Wang Y, Lu Z, Xia Y (2010) J Mater Sci 45:6446. doi: https://doi.org/10.1007/s10853-010-4730-y CrossRefGoogle Scholar
  4. 4.
    Chen SH, Mukherji D, Schumacher G, Frohberg G, Wahi RP (2001) Mater Sci Eng A300:299CrossRefGoogle Scholar
  5. 5.
    Vojtěch D, Čížkovský J, Novák P, Šerák J, Fabián T (2008) Intermetallics 16:896CrossRefGoogle Scholar
  6. 6.
    Ward-Close CM, Minorb R, Doorbarb PJ (1996) Intermetallics 4:217CrossRefGoogle Scholar
  7. 7.
    Brunet A, Valle R, Vassel A (2000) Acta Mater 48:4763CrossRefGoogle Scholar
  8. 8.
    Welham NJ (1998) Mater Sci Eng A255:81CrossRefGoogle Scholar
  9. 9.
    Travitzky N, Gotman I, Claussen N (2003) Mater Lett 57:3422CrossRefGoogle Scholar
  10. 10.
    Ying DY, Zhang DL, Newby M (2004) Metall Mater Trans A 35A:2115CrossRefGoogle Scholar
  11. 11.
    Fana R, Liu B, Zhang J, Bi J, Yin Y (2005) Mater Chem Phys 91:140CrossRefGoogle Scholar
  12. 12.
    Kleiner S, Bertocco F, Khalid FA, Beffort O (2005) Mater Chem Phys 89:362CrossRefGoogle Scholar
  13. 13.
    Gaus SP, Harmer PH, Chan HM (2000) J Am Ceram Soc 83:1606CrossRefGoogle Scholar
  14. 14.
    Feng CF, Froyen L (2000) Composites A 31:385CrossRefGoogle Scholar
  15. 15.
    Bououdina M, Luklinska Z, Guo ZX (2008) Mater Sci Eng A 474:173CrossRefGoogle Scholar
  16. 16.
    Cao R, Zhu H, Hong Chen J, Zhang J (2008) J Mater Sci 43:299. doi: https://doi.org/10.1007/s10853-007-2172-y CrossRefGoogle Scholar
  17. 17.
    Cao GH, Liu ZG, Shen GJ, Liu JM (2001) J Alloys Compd 325:263CrossRefGoogle Scholar
  18. 18.
    Song Y, Xu DS, Yang R, Li D, Hu ZQ (1998) Intermetallics 6:157CrossRefGoogle Scholar
  19. 19.
    Sawai T, Wakai E, Jitsukawa S, Hishinuma A (2002) J Nucl Mater 307–311:389CrossRefGoogle Scholar
  20. 20.
    Kawabata T, Fukai H, Izumi O (1998) Acta Mater 46:2185CrossRefGoogle Scholar
  21. 21.
    Zhang XJ, Gao YH, Ren BY, Tsubaki N (2010) J Mater Sci 45:1622. doi: https://doi.org/10.1007/s10853-009-4138-8 CrossRefGoogle Scholar
  22. 22.
    Yuan Y, Liu HW, Zhao XN, Meng XK, Liu ZG, Boll T, Al-Kassab T (2006) Phys Lett A 358:231CrossRefGoogle Scholar
  23. 23.
    Bystrzanowski S, Bartels A, Clemens H, Gerling R, Schimansky FP, Dehm G, Kestler H (2005) Intermetallics 13:515CrossRefGoogle Scholar
  24. 24.
    Hao YL, Yang R, Cui YY, Li D (2000) Acta Mater 48:1313CrossRefGoogle Scholar
  25. 25.
    Klug HP, Alexander L (1974) X-ray Diffraction Procedures for Poly-Crystalline and Amorphous Materials. JWiley, New YorkGoogle Scholar
  26. 26.
    Cullity BD (1978) Elements of X-Ray Diffraction. Addison-Wesely Publishing Co., USAGoogle Scholar
  27. 27.
    (Sam) Froesa FH, Suryanarayana C, Russell K, Li CG (1995) Mater Sci Eng A 192–193:612CrossRefGoogle Scholar
  28. 28.
    Al-Aqeeli N, Mendoza-Suarez G, Suryanarayana C, Drew RAL (2008) Mater Sci Eng A 480:392CrossRefGoogle Scholar
  29. 29.
    Suryanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  30. 30.
    Okuno K, Yamashita H, Oida K, Nishikawa O (1987) J Phys C6 48:511Google Scholar
  31. 31.
    Porter DA, Easterling KE (1995) Phase transformations in metals and alloys. Chapman & Hall, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Alamolhoda
    • 1
    Email author
  • S. Heshmati-Manesh
    • 1
  • A. Ataie
    • 1
  • S. Sheibani
    • 1
  1. 1.School of Metallurgy and Materials EngineeringUniversity of TehranTehranIran

Personalised recommendations