Journal of Materials Science

, Volume 46, Issue 16, pp 5477–5486 | Cite as

Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends

  • Susan A. BernalEmail author
  • Erich D. Rodríguez
  • Ruby Mejía de Gutiérrez
  • Marisol Gordillo
  • John L. ProvisEmail author


This article assesses the effect of mix design parameters on the compressive strength and thermal performance of alkali silicate-activated blends of metakaolin (MK) and granulated blast furnace slag (GBFS). A strong interrelationship between the effects of activator composition and the GBFS/(GBFS + MK) ratio is identified through statistical analysis of compressive strength data. Pastes formulated with higher SiO2/Al2O3 molar ratios show improvements in mechanical strength with increasing GBFS addition, associated with the formation of a structure comprising coexisting aluminosilicate ‘geopolymer’ gel and Ca-rich Al-substituted silicate hydrate (C-(A)-S-H) reaction products. The inclusion of GBFS in MK-based geopolymers seems also to improve their performance when exposed to high temperatures, as higher residual compressive strengths are reported for these mixtures compared to solely MK-based systems. Only slight differences in shrinkage behaviour are observed at temperatures of up to 600 °C with the inclusion of GBFS; however, slag-blended pastes exhibit enhanced stability at temperatures exceeding 800 °C, as no variation in the compressive strength and no additional shrinkage are identified. These results suggest that nanostructural modifications are induced in the gel by the inclusion of GBFS into MK-based geopolymers, improving the overall performance of these materials.


Compressive Strength Geopolymer Calcium Silicate Hydrate High Compressive Strength Autogenous Shrinkage 



This study was sponsored by Universidad del Valle (Colombia), Instituto Colombiano para el Desarrollo de la Ciencia y Tecnología “Francisco José de Caldas” (COLCIENCIAS) and the Center of Excellence of Novel Materials (CENM). The participation of JLP was funded by the Australian Research Council (ARC), including partial funding through the Particulate Fluids Processing Centre, a Special Research Centre of the ARC.


  1. 1.
    Shi C, Krivenko PV, Roy DM (2006) Alkali-activated cements and concretes. Taylor & Francis, Abingdon, UKCrossRefGoogle Scholar
  2. 2.
    Davidovits J (1991) J Thermal Analysis 37:1633CrossRefGoogle Scholar
  3. 3.
    Palomo A, Glasser FP (1992) Brit Ceram Trans J 91:107Google Scholar
  4. 4.
    Provis JL, van Deventer JSJ (eds) (2009) Geopolymers: Structures, Processing, Properties and Industrial Applications, Woodhead. Cambridge, UKGoogle Scholar
  5. 5.
    Perera DS, Uchida O, Vance ER, Finnie KS (2007) J Mater Sci 42(9):3099. doi: CrossRefGoogle Scholar
  6. 6.
    Provis JL, Duxson P, van Deventer JSJ (2010) Adv Powder Technol 21(1):2CrossRefGoogle Scholar
  7. 7.
    Lecomte I, Henrist C, Liegeois M, Maseri F, Rulmont A, Cloots R (2006) J Eur Ceram Soc 26:3789CrossRefGoogle Scholar
  8. 8.
    Lloyd RR (2009) Accelerated ageing of geopolymers. In: Provis JL, van Deventer JSJ (eds) Geopolymers: Structures, Processing, Properties and Industrial Applications. Woodhead, Cambridge, UK, p 139CrossRefGoogle Scholar
  9. 9.
    Alonso S, Palomo A (2001) Cem Concr Res 31:25CrossRefGoogle Scholar
  10. 10.
    Alonso S, Palomo A (2001) Mater Lett 47(2):55CrossRefGoogle Scholar
  11. 11.
    Cheng TW, Chiu JP (2003) Miner Eng 16:205CrossRefGoogle Scholar
  12. 12.
    Yip CK, van Deventer JSJ (2003) J Mater Sci 38:3851. doi: CrossRefGoogle Scholar
  13. 13.
    Yip CK, Lukey GC, van Deventer JSJ (2005) Cem Concr Res 35:1688CrossRefGoogle Scholar
  14. 14.
    Yip CK, Lukey GC, Provis JL, van Deventer JSJ (2008) Cem Concr Res 38(4):554CrossRefGoogle Scholar
  15. 15.
    Buchwald A, Hilbig H, Ch Kaps (2007) J Mater Sci 42:3024. doi: CrossRefGoogle Scholar
  16. 16.
    Buchwald A, Tatarin R, Stephan D (2009) J Mater Sci 44:5609. doi: CrossRefGoogle Scholar
  17. 17.
    Bernal SA, Mejia de Gutiérrez R, Provis JL, Rose V (2010) Cem Concr Res 40(6):898CrossRefGoogle Scholar
  18. 18.
    Bernal SA, Provis JL, Rose V, Mejía de Gutiérrez R (2011) Cem Concr Compos 33(1):46CrossRefGoogle Scholar
  19. 19.
    Yip CK, Provis JL, Lukey GC, van Deventer JSJ (2008) Cem Concr Res 30:979CrossRefGoogle Scholar
  20. 20.
    Sakulich AR, Anderson E, Schauer C, Barsoum MW (2009) Constr Build Mater 23:2951CrossRefGoogle Scholar
  21. 21.
    García-Lodeiro I, Fernández-Jiménez A, Blanco MT, Palomo A (2008) J Sol-Gel Sci Technol 45:63CrossRefGoogle Scholar
  22. 22.
    García-Lodeiro I, Macphee DE, Palomo A, Fernández-Jiménez A (2009) FTIR analysis. Cem Concr Res 39:147CrossRefGoogle Scholar
  23. 23.
    Hong S-Y, Glasser F (1999) Cem Concr Res 29(12):1893CrossRefGoogle Scholar
  24. 24.
    Hong S-Y, Glasser F (2002) Cem Concr Res 32(7):1101CrossRefGoogle Scholar
  25. 25.
    Barbosa VFF, MacKenzie KJD (2003) Mater Lett 57:1477CrossRefGoogle Scholar
  26. 26.
    Barbosa VFF, MacKenzie KJD (2003) Mater Res Bull 38:319CrossRefGoogle Scholar
  27. 27.
    Rahier H, Wastiels J, Biesemans M, Willem R, Van Assche G, Van Mele B (2007) J Mater Sci 42:2982. doi: CrossRefGoogle Scholar
  28. 28.
    Kong DLY, Sanjayan JG, Sagoe-Crentsil K (2008) J Mater Sci 43:824. doi: CrossRefGoogle Scholar
  29. 29.
    Duxson P, Lukey GC, van Deventer JSJ (2007) J Mater Sci 42:3044. doi: CrossRefGoogle Scholar
  30. 30.
    Duxson P, Lukey GC, van Deventer JSJ (2006) J Non-Cryst Solids 352:5541CrossRefGoogle Scholar
  31. 31.
    Comrie DC, Kriven WM (2003) Ceram Trans 153:211Google Scholar
  32. 32.
    Bell JL, Sarin P, Provis JL, Haggerty RP, Driemeyer PE, Chupas PJ, van Deventer JSJ, Kriven WM (2008) Chem Mater 20(14):4768CrossRefGoogle Scholar
  33. 33.
    Kovalchuk G, Krivenko PV (2009) . In: Provis JL, van Deventer JSJ (eds) Geopolymers: Structures, Processing, Properties and Industrial Applications. Woodhead, Cambridge, UK, p 229Google Scholar
  34. 34.
    Palacios M (2008) Ph.D thesis, Universidad Autónoma de Madrid, SpainGoogle Scholar
  35. 35.
    Bernal S, Mejía de Gutiérrez R, Rodríguez E, Esguerra J (2008) In: Proceedings of the 23rd International Conference on Solid Waste Technology and Management. Philadelphia, USAGoogle Scholar
  36. 36.
    Guerrieri M, Sanjayan J, Collins F (2010) Mater Struct 43:765CrossRefGoogle Scholar
  37. 37.
    Zuda L, Černý R (2009) Cem Concr Compos 31(4):263CrossRefGoogle Scholar
  38. 38.
    Rodríguez E, Mejía de Gutiérrez R, Bernal S, Gordillo M (2009) Rev Latin Metal Mater S1(2):595Google Scholar
  39. 39.
    Rodríguez ED (2008) Efecto de las relaciones Si/Al/Na/Ca en materiales geopolimericos basados en metacaolin. M.Eng. thesis, Universidad del Valle, Cali, ColombiaGoogle Scholar
  40. 40.
    Bernal S, Gordillo M, Mejía de Gutiérrez R, Rodríguez E, Delvasto S, Cuero R (2009) Rev Fac Ing Univ Antioquia 49:112Google Scholar
  41. 41.
    Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Colloids Surf A 269(1–3):47CrossRefGoogle Scholar
  42. 42.
    Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62(9):2309CrossRefGoogle Scholar
  43. 43.
    García-Lodeiro I, Fernández-Jiménez A, Palomo A, Macphee DE (2010) Cem Concr Res 40:27CrossRefGoogle Scholar
  44. 44.
    Provis JL, Rose V, Bernal S, van Deventer JSJ (2009) Langmuir 25(19):11897CrossRefGoogle Scholar
  45. 45.
    Cabrera J, Frías Rojas M (2001) Cem Concr Res 31:177CrossRefGoogle Scholar
  46. 46.
    Frías M, Cabrera J (2001) Cem Concr Res 31:519CrossRefGoogle Scholar
  47. 47.
    Provis JL, Yong SL, Duxson P, van Deventer JSJ (2008) In: 3rd International symposium on non-traditional cement and concrete, Brno, Czech Republic, p 589Google Scholar
  48. 48.
    Duxson P, Lukey GC, Separovic F, van Deventer JSJ (2005) Ind Eng Chem Res 44(4):832CrossRefGoogle Scholar
  49. 49.
    Felsche J, Luger S (1987) Thermochimica Acta 118:35CrossRefGoogle Scholar
  50. 50.
    Rowles M, O’Connor B (2003) J Mater Chem 13:1161CrossRefGoogle Scholar
  51. 51.
    Alarcon-Ruiz L, Platret G, Massieu E, Ehrlacher A (2005) Cem Concr Res 35(3):609CrossRefGoogle Scholar
  52. 52.
    Wang S-D, Scrivener KL (1995) Cem Concr Res 25(3):561CrossRefGoogle Scholar
  53. 53.
    Wang S-D, Scrivener KL (2003) Cem Concr Res 33:769CrossRefGoogle Scholar
  54. 54.
    Richardson IG, Brough AR, Groves GW, Dobson CM (1994) Cem Concr Res 24(5):813CrossRefGoogle Scholar
  55. 55.
    Fernández-Jiménez A, Puertas F, Sobrados I, Sanz J (2003) J Am Ceram Soc 86(8):1389CrossRefGoogle Scholar
  56. 56.
    Fernández-Jiménez A, Pastor JY, Martín A, Palomo A (2010) J Amer Ceram Soc 93(10):3411CrossRefGoogle Scholar
  57. 57.
    Cincotto MA, Melo AA, Repette WL (2003) In: Proceedings of the 11th International Congress on the Chemistry of Cement (ICCC), Durban, South Africa, p 1878Google Scholar
  58. 58.
    Duxson P, Lukey GC, van Deventer JSJ (2006) Langmuir 22(21):8750CrossRefGoogle Scholar
  59. 59.
    Zhang Z, Yao X, Zhu H (2010) Appl Clay Sci 49:1CrossRefGoogle Scholar
  60. 60.
    Dombrowski K, Buchwald A, Weil M (2007) J Mater Sci 42(9):3033. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Susan A. Bernal
    • 1
    • 2
    Email author
  • Erich D. Rodríguez
    • 1
    • 3
  • Ruby Mejía de Gutiérrez
    • 1
  • Marisol Gordillo
    • 1
  • John L. Provis
    • 2
    Email author
  1. 1.Materials Engineering Department, Composite Materials Group, CENMUniversidad del ValleCaliColombia
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of MelbourneAustralia
  3. 3.Instituto de Ciencia y Tecnología del HormigónUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations