Advertisement

Journal of Materials Science

, Volume 46, Issue 16, pp 5466–5476 | Cite as

Role of doping-induced photochemical and microstructural properties in the photocatalytic activity of InVO4 for splitting of water

  • K. Rakesh
  • S. Khaire
  • D. Bhange
  • P. Dhanasekaran
  • S. S. Deshpande
  • S. V. Awate
  • N. M. GuptaEmail author
Article

Abstract

We report in this paper on microstructural, optical and photocatalytic properties of single-phase indium orthovanadates, as a function of doping at lattice sites. The UV–visible spectra of these samples exhibited intense UV-region bands at 250 and 350 nm, besides broad absorption band in visible region (350–700 nm). The wavelength at absorption edge and the intensity of visible absorption showed considerable increase on doping of an impurity, particularly at V or O lattice sites. Also, the samples gave rise to blue-green photoluminescence emission, with overriding bands at ca. 420, 450, 460 and 485 nm, on excitation at 240–420 nm wavelengths. The intensity of these fluorescence bands varied with excitation wavelength and impurity content of a sample. In deviation with several earlier studies, only oxygen and no hydrogen were produced during photocatalytic splitting of water, in the experiments conducted under visible light (>395 nm) and at a pH of ~6.5. The O2 yield depended on the dispersed metal co-catalyst, impurity content and the addition of methanol as sacrificial reagent. On the other hand, small quantities of hydrogen and no oxygen were evolved on UV-irradiation of pure water using metal/InVO4. These results are ascribed to flat band potentials and the doping-induced inter-band donor and acceptor charge trapping states of InVO4, the presence of which is revealed by XRD, luminescence and XPS studies. Our study also confirms that the onset of absorption edge may not necessarily correspond to band-to-band energy gap of a semiconducting material. This accounts for some anomalous band gap energies reported earlier for InVO4.

Keywords

Photocatalytic Activity Visible Light Irradiation BiVO4 Vanadyl Group Sacrificial Reagent 

Notes

Acknowledgements

Authors thank the Department of Science and Technology (SERC, DST), New Delhi, for the financial support to this research project. The help of Dr K.R. Patil in XPS study is gratefully acknowledged. The reviewers are thanked for their valued comments.

References

  1. 1.
    Sahaym U, Norton MG (2008) J Mater Sci 43:5395. doi: https://doi.org/10.1007/s10853-008-2749-0 CrossRefGoogle Scholar
  2. 2.
    Van de Krol R, Liang Y, Schoonman J (2008) J Mater Chem 18:2311CrossRefGoogle Scholar
  3. 3.
    Stroyuk AL, Kryukov AI, Kuchmii SY, Pokhodenko VD (2009) Theor Exp Chem 45:209CrossRefGoogle Scholar
  4. 4.
    Osterloh FE (2008) Chem Mater 20:35CrossRefGoogle Scholar
  5. 5.
    Kudo A, Miseki Y (2009) Chem Soc Rev 38:253CrossRefGoogle Scholar
  6. 6.
    Lin HY, Chen YF, Chen YW (2007) Int J Hydrogen Energy 32:86CrossRefGoogle Scholar
  7. 7.
    Ye J, Zou Z, Arakawa H, Oshikiri M, Shimoda M, Matsushita A, Shishido T (2002) J Photochem Photobiol A 148:79CrossRefGoogle Scholar
  8. 8.
    Lixian X, Lixia S, Chongfang M, Yuanwei L, Feng W, Qunwei L, Hongxing D, Hong H, Jihong S (2006) Chin J Catal 27:100CrossRefGoogle Scholar
  9. 9.
    Zhang L, Fu H, Zhang C, Zhu Y (2006) J Solid State Chem 179:804CrossRefGoogle Scholar
  10. 10.
    Butcher DP, Gewirth AA (2010) Chem Mater 22:2555CrossRefGoogle Scholar
  11. 11.
    Ge L, Xu M, Fang H (2006) J Sol-Gel Sci Technol 40:65CrossRefGoogle Scholar
  12. 12.
    Ye J, Zou Z, Oshikiri M, Matsushita M, Shimoda M, Imai M, Shishido T (2002) Chem Phys Lett 356:221CrossRefGoogle Scholar
  13. 13.
    Zou Z, Arakawa H (2003) J Photochem Photobiol A 158:145CrossRefGoogle Scholar
  14. 14.
    Oshikiri M, Boero M, Ye J, Aryasetiawan F, Kido G (2003) Thin Solid Films 445:168CrossRefGoogle Scholar
  15. 15.
    Randeniya LK, Murphy AB, Plumb IC (2008) J Mater Sci 43:1389. doi: https://doi.org/10.1007/s10853-007-2309-z CrossRefGoogle Scholar
  16. 16.
    Touboul M, Toledano P (1980) Acta Crystallogr B 36:240CrossRefGoogle Scholar
  17. 17.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edn. Wiley, New York, p 618Google Scholar
  18. 18.
    Butler MA, Ginley DS (1978) J Electrochem Soc 125:228CrossRefGoogle Scholar
  19. 19.
    Xu Y, Schoonen MAA (2000) Am Miner 85:543CrossRefGoogle Scholar
  20. 20.
    Li Y, Cao M, Feng L (2009) Langmuir 25:1705CrossRefGoogle Scholar
  21. 21.
    Cimino N, Artuso F, Decker F, Orel B, Vuk AS, Zanoni R (2003) Solid State Ion 165:89CrossRefGoogle Scholar
  22. 22.
    Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE, Briggs D (1979) Handbook of X-ray photoelectron spectroscopy. Perkin Elmer Corporation, USAGoogle Scholar
  23. 23.
    Natile MM, Glisenti A (2002) Chem Mater 14:3090CrossRefGoogle Scholar
  24. 24.
    Kim KS, Davis RE (1972–1973) J Electron Spectrosc 1:251CrossRefGoogle Scholar
  25. 25.
    Konta R, Kato H, Kobayashi H, Kudo A (2003) Phys Chem Chem Phys 5:3061CrossRefGoogle Scholar
  26. 26.
    Kudo A, Omori K, Kato H (1999) J Am Chem Soc 121:11459CrossRefGoogle Scholar
  27. 27.
    Dolgos MR, Paraskos AM, Stolzfus MW, Yarnell SC, Woodward PM (2009) J Solid State Chem 182:1964CrossRefGoogle Scholar
  28. 28.
    Gotić M, Musić S, Ivanda M, Šoufek M, Popović S (2005) J Mol Struct 744–747:535CrossRefGoogle Scholar
  29. 29.
    Kröger FA (1974) The chemistry of the imperfect crystals. North Holland, Amsterdam, p 207Google Scholar
  30. 30.
    Kumari N, Krupanidhi SB, Varma KBR (2010) J Mater Sci Mater Electron 21:1107CrossRefGoogle Scholar
  31. 31.
    Shah P, Bhange DS, Deshpande AS, Kulkarni MS, Gupta NM (2009) Mater Chem Phys 117:399CrossRefGoogle Scholar
  32. 32.
    Liang CH, Meng GW, Lei Y, Philipp F, Zhang LD (2001) Adv Mater 13:1330CrossRefGoogle Scholar
  33. 33.
    Chen SJ, Liu YC, Shao CL, Mu R, Lu YM, Zhang JY, Shen DZ, Fan XW (2005) Adv Mater 17:586CrossRefGoogle Scholar
  34. 34.
    George PP, Gedanken A (2008) Eur J Inorg Chem 6:919CrossRefGoogle Scholar
  35. 35.
    Khodos MYa, Fotiev AA, Shulgin BV (1974) Izvestia Akademii Nauk SSSR Neorganicheskie Materialy 10:1658Google Scholar
  36. 36.
    Enache CS, Lloyd D, Damen MR, Schoonman J, Van de Krol R (2009) J Phys Chem C 113:19351CrossRefGoogle Scholar
  37. 37.
    Hara M, Hitoki G, Takata T, Kondo JN, Kobayashi H, Domen K (2003) Catal Today 78:555CrossRefGoogle Scholar
  38. 38.
    Zou Z, Ye J, Arakawa H (2003) Int J Hydrogen Energy 28:663CrossRefGoogle Scholar
  39. 39.
    Bhattacharyya K, Varma S, Kumar D, Tripathi AK, Gupta NM (2005) J Nanosci Nanotechnol 5:797CrossRefGoogle Scholar
  40. 40.
    Malwadkar SS, Gholap RS, Awate SV, Korake PV, Chaskar MG, Gupta NM (2009) J Photochem Photobiol A 203:24CrossRefGoogle Scholar
  41. 41.
    Awate AV, Sahu RK, Kadgaonkar MD, Kumar R, Gupta NM (2009) Catal Today 141:144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • K. Rakesh
    • 1
  • S. Khaire
    • 1
  • D. Bhange
    • 1
  • P. Dhanasekaran
    • 1
  • S. S. Deshpande
    • 1
  • S. V. Awate
    • 1
  • N. M. Gupta
    • 1
    Email author
  1. 1.Catalysis DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations