Advertisement

Journal of Materials Science

, Volume 46, Issue 16, pp 5460–5465 | Cite as

Inhibition of surface bound carbonate stabilization of tetragonal zirconia

  • M. SkovgaardEmail author
  • K. Almdal
  • A. van Lelieveld
Article

Abstract

Water is known to initiate a tetragonal to monoclinic phase transformation in zirconia particles. Carbonates on the zirconia surface react with water molecules and hence reduce the transformation rate. This study investigates the possibility of inhibition of the reaction between surface carbonates and water in order to increase the transformation rate in the zirconia crystals. It was found possible to limit the reaction by reacting the surface carbonates with alcohols, a thiol and a primary amide prior to reaction with water. It was also concluded that di- and trialcohols are able to stabilize the tetragonal phase, probably as a result of induced lattice strain.

Keywords

Zirconia Tetragonal Zirconia Zirconia Particle Zirconia Sample Polymerization Shrinkage 

Notes

Acknowledgements

Financial support from DentoFit A/S is gratefully acknowledged. We thank Dr. Keld West for assistance with the autosorbtion studies.

References

  1. 1.
    Powers JM, Sakaguchi RL (2006) In: Craig’s restorative dental materials, 12th ed. Mosby Elsevier, United States of AmericaGoogle Scholar
  2. 2.
    Kelly PM, Rose LRF (2002) Prog Mater Sci 47:463CrossRefGoogle Scholar
  3. 3.
    Skovgaard M, Almdal K, Sorensen BF, Linderoth S, van Lelieveld A (2011) J Compos Mater (in press)Google Scholar
  4. 4.
    Skovgaard M, Almdal K, van Lelieveld A (submitted for publication)Google Scholar
  5. 5.
    Sato T, Shimada M (1985) J Am Ceram Soc 68:356CrossRefGoogle Scholar
  6. 6.
    Bianchi D, Chafik T, Khalfallah M et al (1993) Appl Catal A 105:223CrossRefGoogle Scholar
  7. 7.
    Van Lelieveld, A, Almdal, K, Linderoth, S and Sorensen, BF (2005) WO2005099652-A1; NO200604920-A; EP1737415-A1; AU2005232365-A1; CN1950053-A; BR200509889-A; MX2006011038-A1; JP2007532589-W; KR2007015946-A; EP1737415-B1; US2008119585-A1; DE602005006549-E; EP1952793-A2; ZA200608230-A; KR858373-B1; ES2307170-T3Google Scholar
  8. 8.
    Skovgaard M, Ahniyaz A, Sorensen BF et al (2010) J Eur Ceram Soc 30:2749CrossRefGoogle Scholar
  9. 9.
    Van Lelieveld A, Nielsen MS, Almdal K, Linderoth S (2007) WO2007104312-A2; WO2007104312-A3; EP1996144-A2; US2010016465-A1Google Scholar
  10. 10.
    Skovgaard M, Almdal K, van Lelieveld A (2010) J Mater Sci 45:6271. doi: https://doi.org/10.1007/s10853-010-4835-3 CrossRefGoogle Scholar
  11. 11.
    Toraya H, Yoshimura M, Somiya S (1984) J Am Ceram Soc 67:C119Google Scholar
  12. 12.
    Skovgaard M, Almdal K, van Lelieveld A (2011) J Mater Sci 46:1824–1829. doi: https://doi.org/10.1007/s10853-010-5007-1 CrossRefGoogle Scholar
  13. 13.
    Jiao XL, Chen DR, Xiao LH (2003) J Cryst Growth 258:158CrossRefGoogle Scholar
  14. 14.
    Bianchi D, Chafik T, Khalfallah M et al (1994) Appl Catal A 112:219CrossRefGoogle Scholar
  15. 15.
    Jung KT, Bell AT (2001) J Catal 204:339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.DentoFit A/SRoskildeDenmark
  2. 2.Department of Micro- and NanotechnologyTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations