Journal of Materials Science

, Volume 46, Issue 16, pp 5439–5446 | Cite as

Glasses formation, characterization, and crystal-structure determination in the Bi2O3–Sb2O3–TeO2 system prepared in an air

  • Abdeslam ChagraouiEmail author
  • Imane Yakine
  • Abdelmjid Tairi
  • Abdenajib Moussaoui
  • Mohamed Talbi
  • Mohamed Naji


A glass-forming domain is found and studied within Bi2O3–Sb2O3–TeO2 system. The glasses composition were obtained in pseudo-binary xSbO1.5, (1−x)TeO2 for 0.05 ≤ x ≤ 0.20. The constitution of glasses in the system Sb2O3–TeO2 was investigated by DSC, Raman, and Infrared spectroscopy. The influence of a gradual addition of the modifier oxides on the coordination geometry of tellurium atoms has been elucidated based Infrared and Raman studies and showed the transition of TeO4, TeO3+1, and TeO3 units with increasing Sb2O3 content. XRD results reveal the presence of three crystalline: γ-TeO2, α-TeO2, and SbTe3O8 phases during the crystallization process. The density of glasses has been measured. The investigation in the ternary system by the solid state reaction using XRD reveals the existence of a solid solution Bi1−xSb1−xTe2xO4 isotopic to BiSbO4 with 0 ≤ x ≤ 0.1.


Bi2O3 TeO2 Sb2O3 Tellurite Glass Tellurium Atom 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Abdulhalim I, Pannel CN, Wang J, Wylangowski G, Payne DN (1994) J Appl Phys 75:519CrossRefGoogle Scholar
  2. 2.
    Yano T, Fukumoto A, Watanabe A (1971) J Appl Phys 42:3674CrossRefGoogle Scholar
  3. 3.
    Kotov VM, Shkerdin GN, Shkerdin DG, Kotov EV (2005) J Opt Technol 72:511CrossRefGoogle Scholar
  4. 4.
    Takenaga M, Yamada N, Nishiuchi K, Akahira N, Ohta T, Nakamura S, Yamashita T (1983) J Appl Phys 54:5376CrossRefGoogle Scholar
  5. 5.
    Arshak K, Korostynska O (2002) Sensors 2:347CrossRefGoogle Scholar
  6. 6.
    Sen S, Muthe KP, Joshi N, Gadkari SC, Gupta SK, Jagannath M, Roy M, Deshpande SK, Yakhmi JV (2004) Sensors Actuators B 98:154CrossRefGoogle Scholar
  7. 7.
    El-Mallawany R (1992) J Appl Phys 72:1774CrossRefGoogle Scholar
  8. 8.
    Kim SH, Yoko T, Sakka S (1993) J Am Ceram Soc 76:2486CrossRefGoogle Scholar
  9. 9.
    El-Mallawany RAH (2001) Tellurite glasses handbook. CRC Press, Boca Raton, p 113CrossRefGoogle Scholar
  10. 10.
    Nasu H, Matsushita O, Kamiya K, Kobayashi H, Kubodera K (1990) J Non-Cryst Solids 124:275CrossRefGoogle Scholar
  11. 11.
    Thomas PA (1988) J Phys C 21:4611CrossRefGoogle Scholar
  12. 12.
    Beyer VH (1967) Zeitschrift für Kristallographie 124:228CrossRefGoogle Scholar
  13. 13.
    Blanchandin S, Marchet P, Thomas P, Champarnaud-Mesjard J-C, Frit B (1999) J Mater Chem 9:1785CrossRefGoogle Scholar
  14. 14.
    Champarnaud-Mesjard J-C, Blanchandin S, Thomas P, Mirgodsky AP, Merle-Mejean T, Frit B (2000) J Phys Chem Solids 61:1499CrossRefGoogle Scholar
  15. 15.
    Blanchandin S, Thomas P, Marchet P, Frit B, Chagraoui A, Mater J (1999) Sciences 34:4285Google Scholar
  16. 16.
    Blanchandin S, Thomas P, Marchet P, Champarnaud-Mesjard JC, Frit B (2002) J Alloys Compd 34:206CrossRefGoogle Scholar
  17. 17.
    Dewan N, Sreenivas K, Gupta V (2007) J Cryst Growth 305:237CrossRefGoogle Scholar
  18. 18.
    Chagraoui A, Chakib A, Mandil A, Tairi A, Ramzi Z, Benmokhtar S (2007) Scripta Materialia 56:93CrossRefGoogle Scholar
  19. 19.
    Chagraoui A, Ramzi Z, Tairi A, Mandil A, Talibouridah M, Ajebli K, Abboud Y (2009) J Mater Process Technol 209:3111CrossRefGoogle Scholar
  20. 20.
    Chagraoui A, Bensaid H, Tairi A, Ajebli K, Moussaoui A (2010) J Alloys Compd 495:67CrossRefGoogle Scholar
  21. 21.
    Idalgo E, Ara′ujo EB, Yukimitu K, Moraes JCS, Reynoso VCS, Carvalho CL (2006) Mater Sci Eng A 434:13CrossRefGoogle Scholar
  22. 22.
    Sidek HAA, Hamezan M, Zaidan AW, Talib ZA, Kaida K (2005) Am J Appl Sci 2(8):1266CrossRefGoogle Scholar
  23. 23.
    Sekiya T, Mochida N, Soejima A (1995) J Non-Cryst Solids 19i:115CrossRefGoogle Scholar
  24. 24.
    Rosmawati S, Sidek HAA, Zainal AT, Mohd Zobir H (2008) J Appl Sci 8(10):1956CrossRefGoogle Scholar
  25. 25.
    Rong QJ, Osaka A, Nanba T, Takada J, Miura Y (1992) J Mater Sci 27:3793. doi: CrossRefGoogle Scholar
  26. 26.
    Udovic M, Thomas P, Mirgorodsky A, Masson O, Merle-Mejean T, Lasbrugnas C, Champarnaud-Mesjard JC, Hayakawa T (2009) Mater Res Bull 44:248CrossRefGoogle Scholar
  27. 27.
    Chen Y, Nie Q, Xu T, Dai S, Xang X, Shen X (2008) J Non-Cryst Solids 354:3468CrossRefGoogle Scholar
  28. 28.
    Soulis M, Mirgorodsky AP, Merle-Mejean T, Masson O, Thomas P, Udovic M (2008) J Non-Cryst Solids 354:143CrossRefGoogle Scholar
  29. 29.
    Charton P, Armand P (2003) J Non-Cryst Solids 316:189CrossRefGoogle Scholar
  30. 30.
    Charton P, Thomas P, Armand P (2003) J Non-Cryst Solids 321:81CrossRefGoogle Scholar
  31. 31.
    Pye LD, Stevens HJ, Lacourse WC (1992) The physics of non-crystalline solids. Taylor and Francis, London, p 281Google Scholar
  32. 32.
    Blanchandin S, Thomas P, Marchet P, Champarnaud-Mesjard JC, Frit B (1999) J Mater Chem 9:1785CrossRefGoogle Scholar
  33. 33.
    Suzuki K (1987) J Non-Cryst Solids 95/96:15CrossRefGoogle Scholar
  34. 34.
    Sekiya T, Mochida N, Ohtsuka J, Tonokawa M (1989) Nippon Seramikkusu, Kyokai Gakujutsu Ronbunshi 97:1435CrossRefGoogle Scholar
  35. 35.
    Nazabal V, Todoroki S, Nukui A, Matsumoto T, Suehara S, Hondo T, Araki T, Inoue S, Rivero C, Cardinal T (2003) J Non-Cryst Solids 325:85CrossRefGoogle Scholar
  36. 36.
    Kawasaki S, Honma T, Benino Y, Pujiwara T, Sato R, Komatsu T (2003) J Non-Cryst Solids 325:61CrossRefGoogle Scholar
  37. 37.
    Li H, Su Y, Sundaram SK (2001) J Non-Cryst Solids 293–295:402CrossRefGoogle Scholar
  38. 38.
    Sabadel Armand JC, Cachau-Herreillat D, Baldeck P, Doclot O, Ibanez A, Philippot E (1997) J Solid State Chem 132:411CrossRefGoogle Scholar
  39. 39.
    Komatsu T, Tawarayama H, Mohri H, Matusita K (1991) J Non-Cryst Solids 135:105CrossRefGoogle Scholar
  40. 40.
    Hu L, Jiang Z (1996) Phys Chem Glasses 37(1):19Google Scholar
  41. 41.
    Dimitrova-Pankova M, Dimitriev Y, Arnaudov M, Dimitrov V (1989) Phys Chem Glasses 30(6):260Google Scholar
  42. 42.
  43. 43.
    Frost RL, Keeffe EC (2009) J Raman Spectrosc 40:249CrossRefGoogle Scholar
  44. 44.
    Bindi L, Cipriani C (2003) Can Mineral 41:1469CrossRefGoogle Scholar
  45. 45.
    Boultif A, Louer D (1991) J Appl Crystallogr 24:987CrossRefGoogle Scholar
  46. 46.
    Kennedy, Brendy J (1994) Powder Diffr 9:164CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Abdeslam Chagraoui
    • 1
    Email author
  • Imane Yakine
    • 1
  • Abdelmjid Tairi
    • 1
  • Abdenajib Moussaoui
    • 1
  • Mohamed Talbi
    • 1
  • Mohamed Naji
    • 2
    • 3
  1. 1.Laboratoire de Chimie Analytique et Physico-Chimie des Matériaux, Faculté des Sciences Ben M’sikUniversité Hassan II-MohammédiaCasablancaMorocco
  2. 2.CNRS, UPR3079 CEMHTI, 1D avenue de la Recherche ScientifiqueOrléans cedex 2France
  3. 3.Université d’Orléans, Faculté des SciencesOrléans cedex 2France

Personalised recommendations