Journal of Materials Science

, Volume 46, Issue 16, pp 5432–5438 | Cite as

Preparation of mullite bonded porous SiC ceramics by an infiltration method

  • Atanu Dey
  • Nijhuma Kayal
  • Omprakash ChakrabartiEmail author


A powder compact of α-SiC and α-Al2O3 was infiltrated with a liquid precursor of SiO2, which on subsequent heat treatment at 1500 °C produced a mullite bonded porous SiC ceramics. Results showed that infiltration rate could be estimated by using weight gain measurements and theoretical analysis. The bond phase was composed of needle-shaped mullite which was observed to be grown from a siliceous melt formed during the process of oxide bonding. The porous SiC ceramics exhibited a density and porosity of 2 g cm−3 and 30 vol%, respectively, and also a pore size distribution in a range of 2–15 μm with an average pore size of 5 μm. No appreciable degradation of room temperature flexural strength (51 MPa) was observed at high temperatures (1100 °C).


Capillary Pressure Boehmite Liquid Precursor Mullite Formation Infiltration Curve 



The authors would like to thank Mr. S.K. Dalui, Mechanical Property Evaluation Section, CGCRI, for his help in mechanical characterization. One of the authors (AD) expressed his appreciation to CGCRI (CSIR) for the Project Assistantship under Supra Institutional Project (SIP0023).


  1. 1.
    Okada S, Alvin MA (1998) Fuel Process Tech 56:143CrossRefGoogle Scholar
  2. 2.
    She JH, Deng ZY, Doni JD, Ohji T (2002) J Mater Sci 37:3615. doi: CrossRefGoogle Scholar
  3. 3.
    Chung YS, Kim YW (2005) Metal Mater Int 11:351CrossRefGoogle Scholar
  4. 4.
    Ding S, Zeng YP, Jiang D (2008) Mater Charact 59:140CrossRefGoogle Scholar
  5. 5.
    Bardhan N, Bhargava P (2008) Ceram Eng Sci Proc 29:127Google Scholar
  6. 6.
    Glass SJ, Green DJ (1988) Ceram Trans 1:784Google Scholar
  7. 7.
    Colvin PH, Lange FE (1996) J Am Ceram Soc 79:1810CrossRefGoogle Scholar
  8. 8.
    Dey A, Kayal N, Chakrabarti OP (2011) Ceram Int 37:223CrossRefGoogle Scholar
  9. 9.
    Zok F, Lange FF, Porter JR (1991) J Am Ceram Soc 74:1880CrossRefGoogle Scholar
  10. 10.
    Lange FF, Atteraas L, Zok F, Porter JR (1991) Acta Metall Mater 39:209CrossRefGoogle Scholar
  11. 11.
    Tu WC, Lange FF (1995) J Am Ceram Soc 78:3277CrossRefGoogle Scholar
  12. 12.
    Constantz J, Herkelrath WN, Murphy F (1988) Soil Sci Soc Am J 52:10CrossRefGoogle Scholar
  13. 13.
    Aksay IA, Pask JA (1975) J Am Ceram Soc 58:507CrossRefGoogle Scholar
  14. 14.
    Pastila P, Nikkila AP, Mantyla T, Lara-Curzio E (2002) Ceram Eng Sci Proc 23:607CrossRefGoogle Scholar
  15. 15.
    Viswabaskaran V, Gnanam FD, Balasubramanian M (2004) Appl Clay Sci 25:29CrossRefGoogle Scholar
  16. 16.
    Li DX, Thomson WJ (1990) J Am Ceram Soc 73:964CrossRefGoogle Scholar
  17. 17.
    Wei WC, Halloran JH (1988) J Am Ceram Soc 71:166CrossRefGoogle Scholar
  18. 18.
    Li DX, Thomson WJ (1990) J Mater Res 5:1963CrossRefGoogle Scholar
  19. 19.
    Huling JC, Messing GL (1991) J Am Ceram Soc 74:2374CrossRefGoogle Scholar
  20. 20.
    Sundaresan S, Aksay IA (1991) J Am Ceram Soc 74:2388CrossRefGoogle Scholar
  21. 21.
    Sacks MD, Bozkurt N, Scheiffele GW (1991) J Am Ceram Soc 74:2428CrossRefGoogle Scholar
  22. 22.
    Rana APS, Aiko O, Pask JA (1982) Ceram Int 8:151CrossRefGoogle Scholar
  23. 23.
    Sacks MD, Wang K, Scheiffele GW, Bozkurt N (1997) J Am Ceram Soc 80:663CrossRefGoogle Scholar
  24. 24.
    Fischer J, Stawarczyk B, Hammerle CHF (2008) J Dent 36:316CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Atanu Dey
    • 1
  • Nijhuma Kayal
    • 1
  • Omprakash Chakrabarti
    • 1
    Email author
  1. 1.Non-Oxide Ceramics and Composites DivisionsCentral Glass and Ceramic Research Institute, Council of Scientific and Industrial ResearchKolkataIndia

Personalised recommendations