Journal of Materials Science

, Volume 46, Issue 16, pp 5385–5393 | Cite as

Rheological properties of magnetic and electro-active nanoparticles in non-polar liquids

  • Z. Libor
  • S. A. Wilson
  • Q. ZhangEmail author


The rheological properties of two non-polar liquids [silicone oil or perfluorinated oil (FC70)] containing various types of particles, barium titanate, nickel and iron oxide, were investigated as functions of solid loading, particle size and shear rate. All the particles were synthesised in-house. The viscosities of either silicone oil or FC70 containing different solid loadings (10, 20 and 30 g/L) were measured over the shear rate range of 0.10–10 s−1. All the nanofluids showed shear-thinning behaviour within this range and the viscosities increased with the increase of concentrations of nanoparticle and with the decrease of particle size. The highest increase of viscosity was found to be caused by nickel particles in silicone oil due to the formation of Ni network.


Shear Rate Rheological Behaviour Base Fluid Barium Titanate Solid Loading 



Zsuzsanna Libor would like to acknowledge the financial support of the UK Engineering and Physical Sciences Research Council (EPSRC) under Platform Grant No. EP/D506638/1 Nanoscale Multifunctional Ferroic Materials and Devices.


  1. 1.
    Choi S (1995) In: Siginer DA, Wang HP (eds) Developments applications of non-newtonian flows. ASME, New York. FED-vol 231/MD-vol 66Google Scholar
  2. 2.
    Chiang CL, Sung CS, Chen CY (2006) J Magn Magn Mater 305:483CrossRefGoogle Scholar
  3. 3.
    Vekas L, Bica D, Avdeev MV (2007) China Particuol 5:43CrossRefGoogle Scholar
  4. 4.
    Antolini E, Ferretti M, Gemme S (1996) J Mater Sci 31:2187. doi: CrossRefGoogle Scholar
  5. 5.
    Eisazadeh H, Spinks G, Wallace GG (1993) Mater Forum 17:241Google Scholar
  6. 6.
    Zhang HT, Wu G, Chen XH, Qiu XG (2006) Mater Res Bull 41:495CrossRefGoogle Scholar
  7. 7.
    Ikawa H, Munekata N, Shirakami T (2002) Trans Mater Res Soc Jpn 27:707Google Scholar
  8. 8.
    Tokita K, Sato S (2005) Key Eng Mater 301:219CrossRefGoogle Scholar
  9. 9.
    Chen H, Ding Y, Tan C (2007) New J Phys 9:367CrossRefGoogle Scholar
  10. 10.
    Wilson SA, Libor Z, Skordos AA, Zhang Q (2009) J Phys D Appl Phys 42:062003CrossRefGoogle Scholar
  11. 11.
    Masuda H, Ebata A, Teramae K, Hishiunma N (1993) Netsu Bussei Jpn 4:227CrossRefGoogle Scholar
  12. 12.
    Das SK, Putra N, Roetzel W (2003) Int J Heat Mass Transf 46:851CrossRefGoogle Scholar
  13. 13.
    Das SK, Putra N, Roetzel W (2003) Int J Multiph Flow 29:1237CrossRefGoogle Scholar
  14. 14.
    Wen DS, Ding YL (2004) J Thermophys Heat Transf 18:481CrossRefGoogle Scholar
  15. 15.
    Wen DS, Ding YL (2004) J Thermophys Heat Transfer 47:5181CrossRefGoogle Scholar
  16. 16.
    Wen DS, Ding YL (2005) J Nanopart Res 7:265CrossRefGoogle Scholar
  17. 17.
    Pak BC, Cho YI (1998) Exp Heat Transf 11:151CrossRefGoogle Scholar
  18. 18.
    Ding YL, Alias H, Wen DS, Williams RA (2006) Int J Heat Mass Transf 49:240CrossRefGoogle Scholar
  19. 19.
    Keblinski P, Eastman JA, Cahill DG (2005) Mater Today 8:36CrossRefGoogle Scholar
  20. 20.
    Das SK, Choi S, Patel HE (2006) Heat Transfer Eng 27:2Google Scholar
  21. 21.
    Kwak K, Kim C (2005) Korea-Aust Rheol J 17:35Google Scholar
  22. 22.
    Prasher R, Song D, Wang J (2006) Appl Phys Lett 89:133108CrossRefGoogle Scholar
  23. 23.
    Tseng WJ, Lin KC (2003) Mater Sci Eng A 355:186CrossRefGoogle Scholar
  24. 24.
    Park BJ, Park BO, Ryu BH, Choi YM, Kwon KS, Choi HJ (2010) J Appl Phys 108:102803CrossRefGoogle Scholar
  25. 25.
    Wypych G (1999) Handbook of fillers. Chem Tec Publishing, TorontoGoogle Scholar
  26. 26.
    Giannelis EP (1996) Adv Mater 8:29CrossRefGoogle Scholar
  27. 27.
    Libor Z, Zhang Q (2009) Mater Chem Phys 114:902CrossRefGoogle Scholar
  28. 28.
    Chanda SC, Manna A, Vijayan V, Nayak Pranaba K, Ashok KM, Acharya HN (2007) Mater Lett 61:505CrossRefGoogle Scholar
  29. 29.
    Clark IJ, Takeuchi T, Ohtori N, Sinclair DC (1999) J Mater Chem 9:83CrossRefGoogle Scholar
  30. 30.
    Barnes HA, Hutton JF, Walters K (1993) An introduction of rheology. Elsevier, Amsterdam, p 116Google Scholar
  31. 31.
    Khastgir D, Adachi K (2000) Polymer 41:6403CrossRefGoogle Scholar
  32. 32.
    Tseng WJ, Chen CN (2003) Mater Sci Eng A 347:145CrossRefGoogle Scholar
  33. 33.
    Tseng WJ, Chen CN (2006) J Mater Sci 41:1213. doi: CrossRefGoogle Scholar
  34. 34.
    Sanchez-Herencia AJ, Hernandez N, Moreno R (2006) J Am Ceram Soc 89:1890CrossRefGoogle Scholar
  35. 35.
    Yan Y, Pal R, Masliyah J (1991) Chem Eng Sci 46:985CrossRefGoogle Scholar
  36. 36.
    Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Mintsa HA (2007) Int J Heat Fluid Flow 28:1492CrossRefGoogle Scholar
  37. 37.
    Chen S, Oye G, Sjoblom J (2005) J Dispers Sci Technol 26:791CrossRefGoogle Scholar
  38. 38.
    Murshed SMS, Leong KC, Yang C (2008) Appl Therm Eng 28:2109CrossRefGoogle Scholar
  39. 39.
    Wang X, Xu X, Choi SUS (1999) J Thermophys Heat Transf 13:474CrossRefGoogle Scholar
  40. 40.
    Einstein A (1906) Ann Phys 19:289CrossRefGoogle Scholar
  41. 41.
    Krieger JM, Dougherty TJ (1959) Trans Soc Rheol 3:137CrossRefGoogle Scholar
  42. 42.
    Nielsen LE (1970) J Appl Phys 41:4626CrossRefGoogle Scholar
  43. 43.
    Wilson SA (1999) PhD thesis, Cranfield University, UKGoogle Scholar
  44. 44.
    Thies-Weesie DME, Philipse AP, Lekkerkerker HNW (1996) J Colloid Interface Sci 177:427CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MaterialsCranfield UniversityBedfordshireUK

Personalised recommendations