Advertisement

Journal of Materials Science

, Volume 46, Issue 16, pp 5350–5362 | Cite as

Adsorptive features of poly(glycidyl methacrylate-co-hydroxyethyl methacrylate): effect of porogen formulation on heavy metal ion adsorption

  • T. TrakulsujaritchokEmail author
  • N. Noiphom
  • N. Tangtreamjitmun
  • R. Saeeng
Article

Abstract

Preparation of crosslinked copolymer beads based on glycidyl methacrylate (GMA), 2-hydroxyethyl methacrylate (HEMA), and divinyl benzene for the use of heavy metal adsorption has been investigated. In our study, a series of porous copolymer beads were synthesized by suspension polymerization in the presence of porogens, 1-dodecanol, toluene, and heptane at different dilutions. The effect of the porogens on the surface appearance and the porous structure of copolymer beads was studied by scanning electron microscopy and BET method. Diethylene triamine chelating copolymers were obtained through a reaction between amine groups of diethylene triamine and epoxide pendant groups of GMA. Adsorption isotherm and quantitative analysis for adsorption capacity involving copper, chromium, manganese, cadmium, iron, and zinc ions were investigated using atomic absorption spectrophotometer. The adsorption was a function of types of metal ions, adsorption time, and solution properties including pH and metal concentration. Adsorption equilibrium was achieved in approximately 50 min with a maximum adsorption capacity at pH 5.0. The Langmuir isotherm was found to be well fitted on the adsorption behavior. The maximum metal adsorption capacities in single ion solution in mole basis were in the order Cu(II) > Cr(VI) > Mn(II) > Zn(II) > Cd (II) > Fe(II). It was found that introducing porogen in the polymerization mixture produced the copolymer beads with better adsorption capacity. The maximum Cu(II) adsorption capacity of chelating poly(GMA-co-HEMA) beads were 1.35 mmol/g (85.79 mg/g) measured from the beads prepared in the presence of 1-heptane with 50% dilution. Consecutive adsorption–desorption experiments showed that crosslinked poly(GMA-co-HEMA) micro-beads can be reused almost without any change in the adsorption capacity.

Keywords

Adsorption Capacity HEMA Maximum Adsorption Capacity PHEMA Suspension Polymerization 

Notes

Acknowledgements

The study was supported by the research fund through R D & E funding project of National Metal and Materials Technology Center, National Science and Technology Development Agency, Thailand. Financial support from the Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education is gratefully acknowledged.

References

  1. 1.
    Demirbas A (2008) J Hazard Mater 157:220CrossRefGoogle Scholar
  2. 2.
    Malovic L, Nastasovic A, Sandic Z, Markovic J, Dordevic D, Vukovic Z (2007) J Mater Sci 42:3326. doi: https://doi.org/10.1007/s10853-006-0958-y CrossRefGoogle Scholar
  3. 3.
    Uguzdogan E, Denkbas EB, Ozturk E, Tuncel SA, Kabasakal OS (2009) J Hazard Mater 162:1073CrossRefGoogle Scholar
  4. 4.
    Fu H, Kobayashi T (2010) J Mater Sci 45:6694. doi: https://doi.org/10.1007/s10853-010-4762-3 CrossRefGoogle Scholar
  5. 5.
    Duran A, Soylak M, Tuncel SA (2008) J Hazard Mater 155:114CrossRefGoogle Scholar
  6. 6.
    Chen CY, Chiang CL, Chen CR (2007) Sep Purif Technol 54:396CrossRefGoogle Scholar
  7. 7.
    Liu C, Bai R, Hong L (2006) J Colloid Interface Sci 303:99CrossRefGoogle Scholar
  8. 8.
    Bayramoglu G, Arica MY (2005) Sep Purif Technol 45:192CrossRefGoogle Scholar
  9. 9.
    Arpa C, Alim C, Bekta S, Genç Ö, Denizli A (2001) Colloid Surf A Physicochem Eng Asp 176:225CrossRefGoogle Scholar
  10. 10.
    Bicak N, Sherrington DC, Sungur S, Tan N (2003) React Funct Polym 54:141CrossRefGoogle Scholar
  11. 11.
    Say R, Garipcan B, Emir S, Patir S, Denizli A (2002) Colloid Surf A Physicochem Eng Asp 196:119CrossRefGoogle Scholar
  12. 12.
    Maria LCS, Aguar MRMP, Guimaraes PIC, Amorim MCV, Costa MAS, Almeida RSM, Aguiar AP, Oliveira AJB (2003) Eur Polym J 39:291CrossRefGoogle Scholar
  13. 13.
    Hao D, Gong F, Wei W, Hu G, Ma G, Su Z (2008) J Colloid Interface Sci 323:52CrossRefGoogle Scholar
  14. 14.
    Dowding PJ, Goodwin JW, Vincent B (1998) Colloid Surf A Physicochem Eng Asp 145:263CrossRefGoogle Scholar
  15. 15.
    Gomez CG, Igarzabal CIA, Strumia MC (2004) Polymer 45:6189CrossRefGoogle Scholar
  16. 16.
    Pan B, Zhang W, Lv L, Zhang Q, Zheng S (2009) Chem Eng J 151:19CrossRefGoogle Scholar
  17. 17.
    Schmidt RH, Belmont AS, Haupt K (2005) Anal Chim Acta 542:118CrossRefGoogle Scholar
  18. 18.
    Maria LCS, Agiar MRMP, Elia PD, Ferreira LO, Wang SH (2007) Mater Lett 61:160CrossRefGoogle Scholar
  19. 19.
    Chen C, Chiang C, Huang P (2006) Sep Purif Technol 50:15CrossRefGoogle Scholar
  20. 20.
    Chung TH, Chang JY, Lee WC (2009) J Magn Magn Mater 321:1635CrossRefGoogle Scholar
  21. 21.
    Atia AA, Donia AM, Yousif AM (2008) Sep Purif Technol 61:348CrossRefGoogle Scholar
  22. 22.
    Donia AM, Atia AA, Moussa EMM, Sherif AME, Magied MOAE (2009) Hydrometallurgy 95:183CrossRefGoogle Scholar
  23. 23.
    Wang CC, Wang CC (2006) React Funct Polym 66:343CrossRefGoogle Scholar
  24. 24.
    Donia AM, Atia AA, Boraey HAE, Mabrouk DH (2006) Sep Purif Technol 48:281CrossRefGoogle Scholar
  25. 25.
    Liu C, Bai R, Ly QS (2008) Water Res 42:1522Google Scholar
  26. 26.
    Liu C, Bai R, Hong L, Liu T (2010) J Colloid Interface Sci 345:454CrossRefGoogle Scholar
  27. 27.
    Atia AA, Donia AM, Awed HA (2008) J Hazard Mater 155:100CrossRefGoogle Scholar
  28. 28.
    Bai YX, Li YF, Wang MT (2006) Enzyme Microb Technol 39:540CrossRefGoogle Scholar
  29. 29.
    Bakhshi H, Zohuriaam-Mehr MJ, Bouhendi H, Kabiri K (2011) J Mater Sci 46:2771. doi: https://doi.org/10.1007/s10853-010-5151-7 CrossRefGoogle Scholar
  30. 30.
    Harak D, Pollert E, Mackova H (2008) J Mater Sci 43:5845. doi: https://doi.org/10.1007/s10853-008-2836-2 CrossRefGoogle Scholar
  31. 31.
    Cartier H, Hu GH (2000) J Mater Sci 35:1985. doi: https://doi.org/10.1023/A:1004730822600 CrossRefGoogle Scholar
  32. 32.
    Ulusoy U, Akkaya R (2009) J Hazard Mater 163:98CrossRefGoogle Scholar
  33. 33.
    Denizli A, Sanli N, Garipcan B, Patir S, Alsancak G (2004) Ind Eng Chem Res 43:6095CrossRefGoogle Scholar
  34. 34.
    Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H (2009) Carbohydr Polym 75:110CrossRefGoogle Scholar
  35. 35.
    Denizli A, Garipcan B, Karabakan A, Say R, Emir S, Patir S (2003) Sep Purif Technol 30:3CrossRefGoogle Scholar
  36. 36.
    Krishnapariya KR, Kandaswamy M (2010) Carbohydr Res 345:2013CrossRefGoogle Scholar
  37. 37.
    Deng S, Bai R, Chen JP (2003) Langmuir 19:5058CrossRefGoogle Scholar
  38. 38.
    Jiang Y, Kim D (2011) Chem Eng J 166:435CrossRefGoogle Scholar
  39. 39.
    Chen CY, Lin Ms, Hsu KR (2008) J Hazard Mater 152:986CrossRefGoogle Scholar
  40. 40.
    Nastasovic A, Jovanovic S, Dordevic D, Onjia A, Jakovljevic D, Novakovic T (2004) React Funct Polym 58:139CrossRefGoogle Scholar
  41. 41.
    Turkmen D, Yilmaz E, Ozturk N, Akgol N, Denizli A (2009) Mater Sci Eng C 29:2072CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • T. Trakulsujaritchok
    • 1
    Email author
  • N. Noiphom
    • 1
  • N. Tangtreamjitmun
    • 1
  • R. Saeeng
    • 1
  1. 1.Department of Chemistry and Center for Innovation in Chemistry, Faculty of ScienceBurapha UniversityChonburiThailand

Personalised recommendations