Journal of Materials Science

, Volume 46, Issue 16, pp 5332–5344 | Cite as

Characterisation of two chemical compounds formed between hydrated portland cement and benzene-1,2-diol (pyrocatechol)

  • Thomas D. DyerEmail author


Exposure to benzene-1,2-diol (pyrocatechol), a common soil contaminant, has been shown to cause loss of strength in concrete. Synthesis and characterisation of two compounds formed when Portland cement comes in contact with benzene-1,2-diol has been conducted. These compounds are (benzene-1,2-diolato(1-))hydroxidocalcium(II) (formula: [Ca(C6O2H5)OH]) and triaqua(benzene-1,2-diol)(benzene-1,2-diolato(1-))hydroxidocalcium(II) (formula: [Ca(C6O2H5)(C6O2H6)(H2O)3(OH)]). The compounds may play a role in the deterioration process. Characterisation was conducted in terms of thermal decomposition behaviour, infra-red spectra and crystal structure (using powder X-ray diffraction). The likely thermal decomposition reactions of both compounds have been determined, and features in the infra-red spectra assigned to molecular vibrations. Both structures have been solved, with the exception of the location of some hydrogen atoms, and the structures refined using Rietveld refinement methods. It is anticipated that both the thermal analysis data obtained, and crystal structures deduced, in this article can now be used to quantify these phases in cement and concrete exposed to benzene-1,2-diol.


Diol Calcium Hydroxide Pyrocatechol Calcium Oxide Parallel Tempering 


  1. 1.
    Živica V (2006) Constr Build Mater 20:634CrossRefGoogle Scholar
  2. 2.
    Živica V, Bajza A (2001) Constr Build Mater 15:331CrossRefGoogle Scholar
  3. 3.
    Yamada K, Abe T, Tanizawa Y (2007) Food Chem 103:8CrossRefGoogle Scholar
  4. 4.
    Shirley R (1999) The CRYSFIRE system for automatic powder indexing: user’s manual. Lattice Press, GuildfordGoogle Scholar
  5. 5.
    Boultif A, Louer D (2004) J Appl Crystallogr 37:724CrossRefGoogle Scholar
  6. 6.
    Werner P-E, Eriksson L, Westdahl M (1985) J Appl Crystallogr 18:367CrossRefGoogle Scholar
  7. 7.
    Laugier J, Bochu B (2011) LMGP-suite suite of programs for the interpretation of X-ray experiments, by, ENSP/Laboratoire des Matériaux et du Génie Physique, Saint Martin d’Hères, France. and
  8. 8.
    Favre-Nicolin V, Cerny R (2002) J Appl Crystallogr 35:734CrossRefGoogle Scholar
  9. 9.
    Lutterotti L, Matthies S, Wenk H-R, Schultz AJ, Richardson J (1997) J Appl Phys 81:594CrossRefGoogle Scholar
  10. 10.
    Wilson HW (1974) Spectrochim Acta A 30(1974):2141CrossRefGoogle Scholar
  11. 11.
    Rosenheim A, Mong H (1925) Z Anorg Allg Chem 148:25CrossRefGoogle Scholar
  12. 12.
    Griffith WP, Pumphrey CA, Rainey T-A (1986) J Chem Soc Dalton Trans 6:1125CrossRefGoogle Scholar
  13. 13.
    Schlosberg RH, Scouten CG (1988) Energy Fuel 2:582CrossRefGoogle Scholar
  14. 14.
    Öhrström L, Michaud-Soret I (1999) J Phys Chem A 103:256CrossRefGoogle Scholar
  15. 15.
    Greaves SJ, Griffith WP (1991) Spectrochim Acta A 47:133CrossRefGoogle Scholar
  16. 16.
    Michaud-Soret I, Andersson KK, Que L (1995) Biochemistry-US 34:5504CrossRefGoogle Scholar
  17. 17.
    Nakamoto K (2009) Infrared and Raman Spectra of inorganic and co-ordination compounds—part B, 6th edn. Wiley, HobokenGoogle Scholar
  18. 18.
    Brown CJ (1966) Acta Crystallogr 21:170CrossRefGoogle Scholar
  19. 19.
    Busing WR, Levy HA (1957) J Chem Phys 26:563CrossRefGoogle Scholar
  20. 20.
    Wing RM, Callahan KP (1969) Inorg Chem 8:871CrossRefGoogle Scholar
  21. 21.
    Britton D, Dunitz JD (1973) Acta Crystallogr A29:362CrossRefGoogle Scholar
  22. 22.
    Hamilton WC, Ibers JA (1968) Hydrogen bonding in solids. Benjamin, New YorkGoogle Scholar
  23. 23.
    Scherer GW (2004) Cem Concr Res 34:1613CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Concrete Technology Unit, Division of Civil EngineeringUniversity of DundeeDundeeUK

Personalised recommendations