Advertisement

Journal of Materials Science

, Volume 46, Issue 16, pp 5324–5331 | Cite as

High yield polypyrrole: A novel approach to synthesis and characterization

  • Vineet V. Karambelkar
  • J. D. Ekhe
  • S. N. PaulEmail author
Article

Abstract

An improved synthetic route to polypyrrole salt was accomplished using methanesulfonic acid as a novel dopant along with potassium persulfate as the oxidant employing inverted emulsion polymerization technique. Polypyrrole salt was obtained in high-weight percent yield (83.77%) with respect to the amount of monomer used and the reaction time was drastically reduced (1 h 10 min.) as compared to the previously reported synthesis methods. Characterization of the salt yielded satisfactory results. Inverted emulsion polymerization technique has several unique and distinct advantages over conventional techniques which facilitate the synthesis of fused five membered heterocyclic rings which are otherwise difficult to synthesize, and hence sparsely reported in the literature.

Keywords

Polypyrrole Sodium Lauryl Sulfate Polythiophenes Potassium Persulfate Methanesulfonic Acid 

References:

  1. 1.
    Kanatzidis MG (1990) Chem Eng News 68(49):36CrossRefGoogle Scholar
  2. 2.
    Shirakawa H, Louis EJ, Macdiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Commun pp 578–580Google Scholar
  3. 3.
    Heeger AJ (1986) In: Skotheim TA (ed) Handbook of conducting polymers, vol 2. Marcel Dekker, New York, p 729Google Scholar
  4. 4.
    Heywang G, Jones F (1992) Adv Mater 4:116CrossRefGoogle Scholar
  5. 5.
    Lamprakopoulous S, Yfantis D, Yfantis A, Schmeisser D, Anastassopoulous J, Theophanides T (2004) Synth Met 114:229CrossRefGoogle Scholar
  6. 6.
    Helmers R (1973) Justus Liebigs Ann Chem 5–6:890CrossRefGoogle Scholar
  7. 7.
    Chen BC, Lue P (1992) Org Prep Proced Int 24:185CrossRefGoogle Scholar
  8. 8.
    Saurin M, Armes SP (1995) J Appl Polym Sci 56:41CrossRefGoogle Scholar
  9. 9.
    Neoh KG, Tan TC, Kang ET (1988) Polymer 29:553CrossRefGoogle Scholar
  10. 10.
    Saravanan C, Chandrashekhar R, Palaniappan S (2006) Macromol Chem Phys 207:342CrossRefGoogle Scholar
  11. 11.
    Sreedhar B, Sairam M, Chattopadhyay DK, Mitra PP, MohanRao DV (2006) J Appl Poly Sci 101(1):499CrossRefGoogle Scholar
  12. 12.
    Cheah K, Forsyth M, Truong VT (1998) Synth Met 95:215CrossRefGoogle Scholar
  13. 13.
    Rao PS, Sathyanarayana DN, Palaniappan S (2002) Macromolecules 35:4988CrossRefGoogle Scholar
  14. 14.
    Henry MC, Hsueh CC, Timko BP, Freund MS (2001) J Electrochem Soc 148:D155CrossRefGoogle Scholar
  15. 15.
    Cassignol C, Olivier P, Ricard A (1998) J Appl Polym Sci 70:1567CrossRefGoogle Scholar
  16. 16.
    DeArmitt C, Armes SP (1993) Langmuir 9:652CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Vineet V. Karambelkar
    • 1
  • J. D. Ekhe
    • 2
  • S. N. Paul
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringVisvesvaraya National Institute of TechnologyNagpurIndia
  2. 2.Department of Applied ChemistryVisvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations