Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5288–5293 | Cite as

Convenient preparation and photoluminescence properties of polymer microspheres based on europium complex

  • Shuang Qi
  • Weitian YinEmail author
Article

Abstract

The preparation and properties of luminescent polystyrene (PS) composite microspheres with rare earth (RE) organic complexes Eu(DBM)3(Phen) (DBM = dibenzoylmethanate, Phen = 1,10-phenanthroline) entrapped in the microspheres are presented. The luminescent composite microspheres are readily obtained by the soaking pre-existing particles method. The morphologies of resulting composite microspheres are characterized by field emission scanning electron microscope. The photoluminescence properties of the composite microspheres are also investigated. The results show that the existence of the rigid PS matrix can improve the photostability of the RE complex under UV irradiation and elongate the fluorescence lifetime of the RE complex. The improvement of the properties, the convenient preparing method, and brilliant red emission make the composite microspheres promising candidates for in cellulo applications.

Keywords

Rare Earth Phen Acrylic Acid Fluorescence Lifetime Dispersion Polymerization 

Notes

Acknowledgement

The authors gratefully acknowledge the support of the Foundation of Jilin Provincial Science & Technology Department (20080934).

References

  1. 1.
    Bazin H, Trinquet E, Mathis G (2002) Rev Mol Biotechnol 82:233CrossRefGoogle Scholar
  2. 2.
    Selvin PR (2002) Annu Rev Biophys Biomol Struct 31:275CrossRefGoogle Scholar
  3. 3.
    Hemmila I, Mukkala VM (2001) Crit Rev Clin Lab Sci 38:441CrossRefGoogle Scholar
  4. 4.
    Huang SX, Qin HW, Song P, Liu X, Li L, Zhang R, Hu JF, Yan H, Jiang MH (2007) J Mater Sci 42:9973. doi: https://doi.org/10.1007/s10853-007-1991-1 CrossRefGoogle Scholar
  5. 5.
    Zako T, Nagata H, Terada N, Sakono M, Soga K, Maeda M (2008) J Mater Sci 43:5325. doi: https://doi.org/10.1007/s10853-008-2776-x CrossRefGoogle Scholar
  6. 6.
    Song B, Wong E, Yuan J (2005) Chem Commun (28):3553Google Scholar
  7. 7.
    Terai T, Kikuchi K, Isawasa SY, Kawabe T, Hirata Y, Urano Y, Nagano T (2006) J Am Chem Soc 128:6938CrossRefGoogle Scholar
  8. 8.
    Frias JC, Bobba G, Cann MJ, Parker D, Hutchison CJ (2003) Org Biomol Chem 1:905CrossRefGoogle Scholar
  9. 9.
    Brettoniere Y, Cann MJ, Parker D, Slater R (2002) Chem Commun (17):1930Google Scholar
  10. 10.
    Poole RA, Bobba G, Cann MJ, Frias JC, Parker D, Peacock RD (2005) Org Biomol Chem 3:1013CrossRefGoogle Scholar
  11. 11.
    Manning HC, Goebel T, Thompson RC, Price RR, Lee H, Bornhop DJ (2004) Bioconjugate Chem 15:1488CrossRefGoogle Scholar
  12. 12.
    Yu J, Parker D, Pal R, Poole RA, Cann MJ (2006) J Am Chem Soc 128:2294CrossRefGoogle Scholar
  13. 13.
    Tanner PA, Yan B, Zhang HJ (2000) J Mater Sci 35:4325. doi: https://doi.org/10.1023/A:1004892520502 CrossRefGoogle Scholar
  14. 14.
    Wu HX, Cao WM, Wang J, Yang H, Yang SP (2008) Nanotechnology 19:345701CrossRefGoogle Scholar
  15. 15.
    Liu JL, Yan B (2008) J Phys Chem B 112:10898CrossRefGoogle Scholar
  16. 16.
    Li Y, Yan B, Yang H (2008) J Phys Chem C 112:3959CrossRefGoogle Scholar
  17. 17.
    Peng CY, Zhang HJ, Yu JB, Meng QG, Fu LS, Li HR, Sun LN, Guo XM (2005) J Phys Chem B 109:15278CrossRefGoogle Scholar
  18. 18.
    Shunmugam R, Tew GN (2008) Macromol Rapid Commun 29:1355CrossRefGoogle Scholar
  19. 19.
    Yang CY, Srdanov V, Robinson MR, Bazan GC, Heeger AJ (2002) Adv Mater 14:980CrossRefGoogle Scholar
  20. 20.
    Zhang H, Song HW, Yu HQ, Li SW, Bai X, Pan GH, Dai QL, Wang T, Li WL, Lu SZ, Ren XG, Zhao HF, Kong XG (2007) Appl Phys Lett 90:103103CrossRefGoogle Scholar
  21. 21.
    Zhang H, Song HW, Yu HQ, Bai X, Li SW, Pan GH, Dai QL, Wang T, Li WL, Lu SZ, Ren XG (2007) J Phys Chem C 111:6524CrossRefGoogle Scholar
  22. 22.
    Zhang H, Song HW, Dong B, Han LL, Pan GH, Bai X, Fan LB, Lu SZ, Zhao HF, Wang F (2008) J Phys Chem C 112:9155CrossRefGoogle Scholar
  23. 23.
    Zhang XP, Wen SP, Hu S, Zhang LQ, Liu L (2010) J Rare Earth 28:333CrossRefGoogle Scholar
  24. 24.
    Wang HG, Yang QB, Sun L, Zhang CQ, Li YC, Wang S, Li YX (2009) J Alloys Compd 488:414CrossRefGoogle Scholar
  25. 25.
    Sun H, Sharff-Poulsen AM, Gu H, Almdal K (2006) Chem Mater 18:3381CrossRefGoogle Scholar
  26. 26.
    Tan S, Jiang J, Yan B, Shen G, Yu R (2006) Anal Chim Acta 560:191CrossRefGoogle Scholar
  27. 27.
    Buck SM, Xu H, Brasuel M, Philbert MA, Kopelman R (2004) Talanta 63:41CrossRefGoogle Scholar
  28. 28.
    Sumner JP, Kopelman R (2005) Analyst 130:528CrossRefGoogle Scholar
  29. 29.
    Sumner JP, Westerberg NM, Stoddard AK, Fierke CA, Kopelman R (2006) Sens Actuators B 113:760CrossRefGoogle Scholar
  30. 30.
    Ando K, Kawaguchi H (2005) J Colloid Interface Sci 285:619CrossRefGoogle Scholar
  31. 31.
    Zhu H, McShane MJ (2005) J Am Chem Soc 127:13448CrossRefGoogle Scholar
  32. 32.
    Méallet-Renault R, Pansu R, Amigoni-Gerbier S, Larpent C (2004) Chem Commun (20):2344Google Scholar
  33. 33.
    Gouanvé F, Schuster T, Allard E, Méallet-Renault R, Larpent C (2007) Adv Funct Mater 17:2746CrossRefGoogle Scholar
  34. 34.
    Frigoli M, Ouadahi K, Larpent C (2009) Chem Eur J 15:8319CrossRefGoogle Scholar
  35. 35.
    Melby LR, Rose NJ, Abrmson E, Caris JC (1964) J Am Chem Soc 86:5117CrossRefGoogle Scholar
  36. 36.
    Moynihan S, Iacopino D, O’Carroll D, Doyle H, Tanner DA, Redmond G (2007) Adv Mater 19:2474CrossRefGoogle Scholar
  37. 37.
    Chang NC, Gruber JB (1964) J Chem Phys 41:3227CrossRefGoogle Scholar
  38. 38.
    Malta OL, Brito HF, Menezes JFS, Goncalves e Silva FR, Alves S, Farias FS, De Andrade AVM (1997) J Lumin 75:255CrossRefGoogle Scholar
  39. 39.
    Murtagh MT, Shahriari MR, Krihak M (1998) Chem Mater 10:3862CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.China-Japan Union Hospital, Jilin UniversityChangchunPeople’s Republic of China

Personalised recommendations