Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5197–5207 | Cite as

Consolidation by electrical resistance sintering of Ti powder

  • J. M. MontesEmail author
  • J. A. Rodríguez
  • F. G. Cuevas
  • J. Cintas
Article

Abstract

In this study, commercially pure Ti powder was consolidated by the electrical resistance sintering (ERS) technique. This consolidation technique consists of the application of pressure (around 100 MPa) to a powder mass at the same time that the powder is heated by the passage of an electric current of high intensity (around 10 kA), low voltage (around 5 V) and a frequency of 50 Hz. Several current intensities and dwell times were tested during the consolidation process. The work includes a microstructural study of the most relevant characteristics of the compacts. Furthermore, the obtained compacts were mechanically characterised by the measurement of their hardness distribution and by an indirect tensile test. For all the compacts, the average hardness and the strength resulting from the indirect tensile test are empirically related to the global porosity of the compact and the electric energy supplied during the consolidation process. This energy is a function of the intensity of the electric current and the dwell time. These empirical relationships can be useful to select the best process conditions. The results were compared with values obtained for specimens prepared with the same powder by the conventional powder-metallurgy route of cold die pressing and furnace sintering.

Keywords

Consolidation Process Final Porosity Indirect Tensile Strength Powder Mass Conventional Route 

Notes

Acknowledgements

The authors are grateful to FEDER/MCyT, Madrid, and Junta de Andalucía for funding this research within the framework of the Projects MAT2007-61643 and P08-TEP-3537, respectively. The authors also wish to thank the technicians J. Pinto, M. Madrid and M. Sánchez (Univ. Seville, Spain) for experimental assistance.

References

  1. 1.
    Taylor GF (1933) Apparatus for making hard metal compositions. US Patent 1896854, Feb 1933Google Scholar
  2. 2.
    Lenel FV (1955) J Met 7:158Google Scholar
  3. 3.
    Suzuki T, Saito S (1971) J Jpn Soc Powder Powder Metall 18:28CrossRefGoogle Scholar
  4. 4.
    Saito S, Ishitama T, Sawaoka A (1974) Bull Tokyo Inst Technol 120:137Google Scholar
  5. 5.
    Hara Z, Akechi K (1980) In: Kimura H, Izumi O (eds) Titanium ’80. Science and technology, proceedings of the 4th international conference on Ti, Kyoto, Japan, 19–22 May 1980. The Metallurgical Society of AIME, New York, p 2265Google Scholar
  6. 6.
    Okazaki K (1994) Rev Part Mater 2:215Google Scholar
  7. 7.
    Istomina TI, Baidenko AA, Raichenko AI, Golberg MA, Svechkov AV (1983) Sov Powder Metall Met Ceram 22(11):957CrossRefGoogle Scholar
  8. 8.
    Burenkov GL, Raichenko AI, Suraeva M (1987) Sov Powder Metall Met Ceram 26(9):709CrossRefGoogle Scholar
  9. 9.
    Sukhov OV, Baidenko AA, Istomina TI, Raichenko AI, Popov VP, Svechkov AV, Golberg MA (1987) Sov Powder Metall Met Ceram 26(7):530CrossRefGoogle Scholar
  10. 10.
    Yokota M, Nagae T, Nose M (1998) Proceedings of the world congress PM’98, Granada, Spain, 18–22 Oct 1998. EPMA, Bellstone, Shrewsbury, p 284Google Scholar
  11. 11.
    Moriguchi H, Tsuduki K, Ikegaya A (2000) Powder Metall 43(1):17Google Scholar
  12. 12.
    Groza JR, Zavaliangos A (2000) Mater Sci Eng A 287:171CrossRefGoogle Scholar
  13. 13.
    Montes JM, Rodríguez JA, Herrera EJ (2003) Rev Met Madrid 39:99 (in Spanish)CrossRefGoogle Scholar
  14. 14.
    Montes JM, Cintas J, Cuevas FG, Rodríguez JA (2004) Proceedings of Euro PM 2004, Vienna, Austria, 17–21 Oct 2004, vol 2. EPMA, Bellstone, Shrewsbury p 259Google Scholar
  15. 15.
    Henriques VAR, Galvani ET, Petroni SLG, Paula MSM, Lemos TG (2010) J Mater Sci 45(21):5844. doi: https://doi.org/10.1007/s10853-010-4660-8 CrossRefGoogle Scholar
  16. 16.
    Mao ZP, Ma J, Wang J, Sun B (2009) J Mater Sci 44(12):3265. doi: https://doi.org/10.1007/s10853-009-3438-3 CrossRefGoogle Scholar
  17. 17.
    Tuncer N, Arslan G (2009) J Mater Sci 44(6):1477. doi: https://doi.org/10.1007/s10853-008-3167-z CrossRefGoogle Scholar
  18. 18.
    Li H, Yuan B, Gao Y, Chung CY, Zhu M (2009) J Mater Sci 44(3):875. doi: https://doi.org/10.1007/s10853-008-3193-x CrossRefGoogle Scholar
  19. 19.
    ASTM B 265-06a (2006) Standard specification for titanium and titanium alloy strip, sheet and plate. ASTM International, West Conshohocken, PA, USAGoogle Scholar
  20. 20.
    ASM Handbook (1998) Metal powder technologies and applications, vol 7. ASM International, USAGoogle Scholar
  21. 21.
    Capua JR, Michot G (2006) Int J Fract 139:455CrossRefGoogle Scholar
  22. 22.
    Montes JM, Cuevas FG, Cintas J (2007) Metall Mater Trans B 38:957CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. M. Montes
    • 1
    Email author
  • J. A. Rodríguez
    • 1
  • F. G. Cuevas
    • 2
  • J. Cintas
    • 1
  1. 1.Department of Mechanical and Materials Engineering, Escuela Técnica Superior de IngenieríaUniversidad de SevillaSevillaSpain
  2. 2.Department of Chemistry and Materials Science, Escuela Técnica Superior de IngenieríaUniversidad de HuelvaPalos de la FronteraSpain

Personalised recommendations