Advertisement

Journal of Materials Science

, Volume 46, Issue 13, pp 4715–4718 | Cite as

Tunable high Q perovskite dielectrics in the BaO–NiO–Ta2O5 system

  • Meganathan Thirumal
  • Peter K. Davies
Letter

Introduction

Oxide perovskites with the general formula A(B 1/3IB 2/3II)O 3 (A = Ba, Sr; B I = Mg, Zn, Ni, Co, etc.; B II = Ta, Nb) have been investigated for over two decades for applications as dielectric resonators in wireless communication systems. The key materials requirements include a high dielectric constant (ε), low dielectric loss or high quality factor ( Q) in the GHz range, and a zero temperature coefficient of resonant frequency (τ f). Recent investigations of the effect of Zn volatilization on the properties of one of the most studied high Q systems, Ba(Zn 1/3Ta 2/3)O 3 (BZT), revealed a resultant Zn-deficient impurity phase, Ba 8ZnTa 6O 24 also exhibits a good microwave response (ε = 30.5, Q· f = 62,000, τ f = +36 ppm/°C) [ 1, 2, 3]. This phase, which has a closely related hexagonal perovskite structure (Fig.  1), can also be sintered at temperatures significantly lower than its cubic perovskite counterpart.

Keywords

Perovskite Dielectric Property Microwave Dielectric Property Standard Solid State Hexagonal Perovskite 

Notes

Acknowledgements

This work was supported by Ericsson Radio Access and made use of the MRSEC shared experimental facilities supported by the National Science Foundation through Grant No. DMR 05-20020.

References

  1. 1.
    Davies PK, Borisevich A, Thirumal M (2003) J Eur Ceram Soc 23:2461CrossRefGoogle Scholar
  2. 2.
    Moussa SM, Claridge JB, Rosseinsky MJ, Clarke S, Ibberson RM, Price T, Iddles DM, Sinclair DC (2003) Appl Phys Lett 82:4537CrossRefGoogle Scholar
  3. 3.
    Bieringer M, Moussa SM, Liam DL, Burrows A, Kiely CJ, Rosseinsky MJ, Ibberson RM (2003) Chem Mater 15:586CrossRefGoogle Scholar
  4. 4.
    Kan A, Ogawa H, Yokoi A, Ohsato H (2006) Jpn J Appl Phys 45:7494CrossRefGoogle Scholar
  5. 5.
    Kawaguchi S, Ogawa H, Kan A, Ishihara S (2006) J Eur Ceram Soc 26:2045CrossRefGoogle Scholar
  6. 6.
    Thirumal M, Davies PK (2005) J Am Ceram Soc 88:2126CrossRefGoogle Scholar
  7. 7.
    Abakumov AM, Van Tendeloo G, Scheglov AA, Shpanchenko RV, Antipov EV (1996) J Solid State Chem 125:102CrossRefGoogle Scholar
  8. 8.
    Tamura H, Konoike T, Sakabe Y, Wakino K (1984) J Am Ceram Soc 67:C-59CrossRefGoogle Scholar
  9. 9.
    Kolodiazhnyi T, Petric A, Belous A, V`Yunov O, Yanchevskij O (2002) J Mater Res 17:3182CrossRefGoogle Scholar
  10. 10.
    Davies PK, Tong J, Negas T (1997) J Am Ceram Soc 80:1727CrossRefGoogle Scholar
  11. 11.
    Wu H, Davies PK (2006) J Am Ceram Soc 89:2239Google Scholar
  12. 12.
    Wu H, Davies PK (2006) J Am Ceram Soc 89:2250Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations