Journal of Materials Science

, Volume 46, Issue 15, pp 5192–5196 | Cite as

Impact behavior of in situ TiB2/Al composite at various temperatures

  • Feifei Wang
  • Naiheng Ma
  • Yugang Li
  • Xianfeng Li
  • Haowei WangEmail author


The impact behavior of the in situ TiB2/Al composite was investigated at temperatures varying from −50 to 200 °C. The effects of the reinforcement, heat treatment as well as temperature on the impact toughness and failure mechanism were discussed. Results showed that the impact toughness of the composite decreases significantly due to the presence of the stiff TiB2 reinforcements. The precipitations caused by aging play the same role as TiB2 reinforcements, which constrain the deformation of the matrix and reduce the impact toughness. The TiB2/Al composite is more endurable in suffering the impact load at subzero and high temperatures compared to that at room temperature. The fractography of the TiB2/Al composite is a cleavage-and-dimple morphology. The eutectic silicon is the preferred site for catastrophic cracking. There is no cracking in the in situ TiB2 reinforcement because of the small size and near spherical shape. However, the “pulled-out” failure occurs for the TiB2 reinforcement, which is due to the relative weaker interfacial strength than the strength of reinforcement.


Impact Energy Impact Toughness Impact Load Impact Behavior Eutectic Silicon 



The authors are indebted to Xiangqi Meng for his experimental assistance.


  1. 1.
    Hassan AM, Mayyas AT, Alrashdan A, Hayajneh MT (2008) J Mater Sci 43:5368. doi: CrossRefGoogle Scholar
  2. 2.
    Park BG, Crosky AG, Hellier AK (2001) J Mater Sci 36:2417. doi: CrossRefGoogle Scholar
  3. 3.
    Tjong SC, Wang GS, Mai YW (2005) Compos Sci Technol 65:1537CrossRefGoogle Scholar
  4. 4.
    Reddy B, Das K, Das S (2007) J Mater Sci 42:9366. doi: CrossRefGoogle Scholar
  5. 5.
    Girot FA, Quenisset JM, Naslain R (1987) Compos Sci Technol 30:155CrossRefGoogle Scholar
  6. 6.
    Tjong SC, Ma ZY (2000) Mater Sci Eng R 29:49CrossRefGoogle Scholar
  7. 7.
    Ozben T, Kilickap E, ÇakIr O (2008) J Mater Process Technol 198:220CrossRefGoogle Scholar
  8. 8.
    Unsworth JP, Bandyopadhyay S (1994) J Mater Sci 29:4645. doi: CrossRefGoogle Scholar
  9. 9.
    Jayamathy M, Kailas SV, Kumar K, Seshan S, Srivatsan TS (2005) Mater Sci Eng A 393:27CrossRefGoogle Scholar
  10. 10.
    Ozden S, Ekici R, Nair F (2007) Composites A 38:484CrossRefGoogle Scholar
  11. 11.
    Richardson MOW, Wisheart MJ (1996) Composites A 27:1123CrossRefGoogle Scholar
  12. 12.
    Bonollo F, Ceschini L, Garagnani GL (1997) Appl Compos Mater 4:173Google Scholar
  13. 13.
    Mandal A, Chakraborty M, Murty BS (2008) Mater Sci Eng A 489:220CrossRefGoogle Scholar
  14. 14.
    Yi HZ, Ma NH, Li XF, Zhang YJ, Wang HW (2006) Mater Sci Eng A 419:12CrossRefGoogle Scholar
  15. 15.
    Yi HZ, Ma NH, Zhang YJ, Li XF, Wang HW (2006) Scr Mater 54:1093CrossRefGoogle Scholar
  16. 16.
    Zhang YJ, Ma NH, Wang HW, Le YK, Li SC (2005) Scr Mater 53:1171CrossRefGoogle Scholar
  17. 17.
    Ortega-Celaya F, Pech-Canul MI, López-Cuevas J, Rendón-Ángeles JC, Pech-Canul MA (2007) J Mater Process Technol 183:368CrossRefGoogle Scholar
  18. 18.
    ASM (1990) ASM handbook, vol 2. ASM International, Materials Park, OHGoogle Scholar
  19. 19.
    Tjong SC, Wang GS (2004) Adv Eng Mater 6:964CrossRefGoogle Scholar
  20. 20.
    Surappa MK, Sivakumar P (1993) Compos Sci Technol 46:287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Feifei Wang
    • 1
  • Naiheng Ma
    • 1
  • Yugang Li
    • 1
  • Xianfeng Li
    • 1
  • Haowei Wang
    • 1
    Email author
  1. 1.State Key Laboratory of Metal Matrix Composites of Shanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations