Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5184–5191 | Cite as

Non-isothermal crystallization of polyamide 6 matrix in all-polyamide composites: crystallization kinetic, melting behavior, and crystal morphology

  • Bozhen Wu
  • Ying Gong
  • Guisheng YangEmail author
Article

Abstract

The difference in the melting points of polyamide 66 (PA66) fiber and polyamide 6 (PA6) film permits the preparation of all-polyamide (all-PA) composites by film-packing. Good interface performance and integrated consolidation structure in this all-PA composite are contributed to the similar chemical composition between PA66 fiber and PA6 matrix. In this paper, the non-isothermal crystallization kinetics and melting behaviors of PA6 matrix in all-PA composite are studied by differential scanning calorimetry (DSC), in which the modified Avrami equation, Ozawa model, and Mo equation combining Avrami and Ozawa equation are employed. It is found that the Mo equation exhibits great advantages in treating the non-isothermal crystallization kinetics for both neat PA6 and PA6 matrix in all-PA composite. The crystal morphologies of single PA66 fiber–PA6 composite by polarizing microscope (POM) clearly show a transcrystallinity layer of PA6 around PA66 fiber that proves a remarkable nucleation effect of PA66 fiber surface on the crystallization of PA6 matrix.

Keywords

Cool Rate PA66 Fiber Ozawa Equation Transcrystallinity Layer Ozawa Model 

References

  1. 1.
    Capiati NJ, Porter RS (1975) J Mater Sci 10:1671. doi: https://doi.org/10.1007/BF00554928 CrossRefGoogle Scholar
  2. 2.
    Pegoretti A, Zanolli A, Migliaresi C (2006) Compos Sci Technol 66:1970CrossRefGoogle Scholar
  3. 3.
    ElMaaty MIA, Bassett DC, Olley RH, Hine PJ, Ward IM (1996) J Mater Sci 31:1157. doi: https://doi.org/10.1007/BF00353094 CrossRefGoogle Scholar
  4. 4.
    Maity J, Jacob C, Das CK, Alam S, Singh RP (2008) Polym Test 27:581CrossRefGoogle Scholar
  5. 5.
    Rasburn J, Hine PJ, Ward IM, Olley RH, Bassett DC, Kabeel MA (1995) J Mater Sci 30:615. doi: https://doi.org/10.1007/BF00356319 CrossRefGoogle Scholar
  6. 6.
    Rojanapitayakorn P, Mather PT, Goldberg AJ, Weiss RA (2005) Polymer 46:761CrossRefGoogle Scholar
  7. 7.
    Nishino T, Matsuda I, Hirao K (2004) Macromolecules 37:7683CrossRefGoogle Scholar
  8. 8.
    Ishida H, Bussi P (1991) Macromolecules 24:3569CrossRefGoogle Scholar
  9. 9.
    Loos J, Katzenberg F, Petermann J (1997) J Mater Sci 32:1551. doi: https://doi.org/10.1023/A:1018578606510 CrossRefGoogle Scholar
  10. 10.
    Cartledge HCY, Baillie CA (1999) J Mater Sci 34:5099. doi: https://doi.org/10.1023/A:1004713200894 CrossRefGoogle Scholar
  11. 11.
    Han KQ, Liu ZJ, Yu MH (2005) Macromol Mater Eng 290:688CrossRefGoogle Scholar
  12. 12.
    Kurokawa M, Uchiyama Y, Iwai T, Nagai S (2003) Wear 254:468CrossRefGoogle Scholar
  13. 13.
    Campbell M, Denault J, Yahia L, Bureau MN (2008) Compos Part A 39:796CrossRefGoogle Scholar
  14. 14.
    Rath M, Kreuzberger S, Hinrichsen G (1998) Compos Part A 29A:933CrossRefGoogle Scholar
  15. 15.
    Yu Z, Ait-Kadi A, Brisson J (1994) Polymer 35:1409CrossRefGoogle Scholar
  16. 16.
    Bessell T, Shortall JB (1975) J Mater Sci 10:2035. doi: https://doi.org/10.1007/BF00557481 CrossRefGoogle Scholar
  17. 17.
    Cartledge HCY, Baillie CA (1999) J Mater Sci 34:5113. doi: https://doi.org/10.1023/A:1004765201803 CrossRefGoogle Scholar
  18. 18.
    Quan H, Li ZM, Yang MB, Huang R (2005) Compos Sci Technol 65:999CrossRefGoogle Scholar
  19. 19.
    Hine PJ, Ward IM (2006) J Appl Polym Sci 101:991CrossRefGoogle Scholar
  20. 20.
    Gong Y, Yang GS (2009) J Mater Sci 44:4639. doi: https://doi.org/10.1007/s10853-009-3708-0 CrossRefGoogle Scholar
  21. 21.
    Liu XH, Wu Q (2002) Eur Polym J 38:1383CrossRefGoogle Scholar
  22. 22.
    Ozawa T (1971) Polymer 12:150CrossRefGoogle Scholar
  23. 23.
    Liu JP, Mo ZS, Qi YC, Zhang HF, Chen DL (1993) Acta Polym Sin 1:1Google Scholar
  24. 24.
    Weeding TL, Veeman WS, Veeman WS, Angad Gaur H, Huysmans WGB (1988) Macromolecules 21:2028CrossRefGoogle Scholar
  25. 25.
    Khanna YP (1992) Macromolecules 25:3296CrossRefGoogle Scholar
  26. 26.
    Bassett DC, Patel D (1994) Polymer 35:1855CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Joint Laboratory of Polymer Science and Technology, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina
  3. 3.Shanghai Genius Advanced Materials Co. LtdShanghaiChina

Personalised recommendations