Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5176–5183 | Cite as

Flame retardant diglycidylphenylphosphate and diglycidyl ether of bisphenol-A resins containing Borassus fruit fiber composites

  • P. Sudhakara
  • P. KannanEmail author
  • K. Obireddy
  • A. Varada Rajulu
Article

Abstract

Natural fiber composites containing diglycidylphenylphosphate (DGPP) resin were prepared from DGPP, diglycidyl ether of bisphenol-A (DGEBA), and Borassus fruit fiber. Morphology, thermal, and mechanical properties of blends and fiber-reinforced composites were investigated. The tensile strength, flexural strength, and tensile modulus increased up to 10% addition of DGPP and decreased with high percentage of DGPP. The flexural strength of composites was increased up to 15% addition of DGPP due to good dispersion and toughening of DGPP in DGEBA. As observed by the SEM analysis, the matrix–fiber adhesion was poor in the case of 20% DGPP containing composites and failure occurred through fiber pullout whereas for composites with 5 and 10% of DGPP, interaction of fiber and matrix was strong and failure occurred through fiber breakage rather than fiber pullout. Addition up to 15% DGPP improved desired thermal and mechanical properties of these composites.

Keywords

Flexural Strength Impact Strength Flame Retardant Fiber Composite Fire Retardant 

Notes

Acknowledgement

The P.K gratefully acknowledges the financial support from Department of Science and Technology, New Delhi, India, under the SERC Scheme (Ref. Sanction No. SR/S1/PC-14/2003). P.S sincerely acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for the award of Senior Research Fellowship.

References

  1. 1.
    Laranjeira E, De Carvalho LH, De Silva LSM, D’Almeida JR (2006) J Reinf Plast Compos 25:1269CrossRefGoogle Scholar
  2. 2.
    Bledzki AK, Gassan J (1999) Prog Polym Sci 24:221CrossRefGoogle Scholar
  3. 3.
    Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19CrossRefGoogle Scholar
  4. 4.
    Wu C (2009) Polym Degrad Stab 94:1076CrossRefGoogle Scholar
  5. 5.
    Suizu N, Uno T, Goda K, Ohgi J (2009) J Mater Sci 44:2477. doi: https://doi.org/10.1007/s10853-009-3317-y CrossRefGoogle Scholar
  6. 6.
    Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Compos A Appl Sci 41:806CrossRefGoogle Scholar
  7. 7.
    Gassan J, Chate A, Bledzki AK (2001) J Mater Sci 36:3715. doi: https://doi.org/10.1023/A:1017969615925 CrossRefGoogle Scholar
  8. 8.
    Teulé F, Furin WA, Cooper AR, Duncan JR, Lewis RV (2007) J Mater Sci 42:8974. doi: https://doi.org/10.1007/s10853-007-1642-6 CrossRefGoogle Scholar
  9. 9.
    Al-Sulaiman F (2000) J Reinf Plast Compos 19:1379CrossRefGoogle Scholar
  10. 10.
    Varada Rajulu A, Babu Rao G, Ravi Prasad Rao B, Madhusudana Reddy A, He J, Zhang J (2002) J Appl Polym Sci 84:2216CrossRefGoogle Scholar
  11. 11.
    Varada Rajulu A, Venu Nadhan A, Rama Devi R (2006) J Appl Polym Sci 102:2338CrossRefGoogle Scholar
  12. 12.
    Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Compos A Appl Sci 38:461CrossRefGoogle Scholar
  13. 13.
    Hassan ML, Hassan EA, Oksman KN (2011) J Mater Sci 46:1732. doi: https://doi.org/10.1007/s10853-010-4992-4 CrossRefGoogle Scholar
  14. 14.
    Preeti L, Netravali AN (2002) J Mater Sci 37:3657. doi: https://doi.org/10.1023/A:1016557124372 CrossRefGoogle Scholar
  15. 15.
    Towo AN, Ansell MP (2008) Compos Sci Technol 68:925CrossRefGoogle Scholar
  16. 16.
    Rout J, Tripathy SS, Nayak SK, Misra M, Mohanty AK (2001) J Appl Polym Sci 79:1169CrossRefGoogle Scholar
  17. 17.
    Joseph K, Varghese S, Kalaprasad G, Thomas S, Prasannakumari L, Koshy P, Pavithran C (1996) Eur Polym J 32:1243CrossRefGoogle Scholar
  18. 18.
    Razera IAT, Frollini E (2004) J Appl Polym Sci 91:1077CrossRefGoogle Scholar
  19. 19.
    Deshpande AP, Bhaskar Rao M, Lakshmana Rao C (2000) J Appl Polym Sci 76:83CrossRefGoogle Scholar
  20. 20.
    Liu L, Yu J, Cheng L, Yang X (2009) Polym Degrad Stab 94:90CrossRefGoogle Scholar
  21. 21.
    Araújo JR, Waldman WR, De Paoli MA (2008) Polym Degrad Stab 93:1770CrossRefGoogle Scholar
  22. 22.
    Georgopoulos ST, Tarantili PA, Avgerinos E, Andreopoulos AG, Koukios EG (2005) Polym Degrad Stab 90:303CrossRefGoogle Scholar
  23. 23.
    Sarvanan D, Pallavi N, Balaji R, Parthiban R (2008) J Text Inst 99:133CrossRefGoogle Scholar
  24. 24.
    Obi Reddy K, Guduri BR, Varada Rajulu A (2009) J Appl Polym Sci 114:603CrossRefGoogle Scholar
  25. 25.
    Bill B (1999) Common names of common (and Uncommon) palms, virtual palm encyclopedia. Palm & Cycad Societies of Florida, USAGoogle Scholar
  26. 26.
    Pearce EM, Khanna YP, Reucher D (eds) (1981) Thermal characterization of polymeric materials. Academic Press, New YorkGoogle Scholar
  27. 27.
    Kannan P, Kishore K (1997) Eur Polym J 33:1799CrossRefGoogle Scholar
  28. 28.
    Kannan P, Kishore K (1992) Polymer 33:418CrossRefGoogle Scholar
  29. 29.
    Senthil S, Kannan P (2001) J Polym Sci A Polym Chem 39:2396CrossRefGoogle Scholar
  30. 30.
    Laskoski M, Dominguez DD, Keller TM (2007) Polymer 48:6234CrossRefGoogle Scholar
  31. 31.
    Lin CH, Hwang TY, Taso YR, Lin TL (2007) Macromol Chem Phys 208:2628CrossRefGoogle Scholar
  32. 32.
    Liu W, Varley RJ, Simon GP (2006) Polymer 47:2091CrossRefGoogle Scholar
  33. 33.
    Chiang CL, Chang RC (2008) Compos Sci Technol 68:2849CrossRefGoogle Scholar
  34. 34.
    Levchik SV, Weil ED (2004) Polym Int 53:1901CrossRefGoogle Scholar
  35. 35.
    Chen X, Jiao C (2010) Polym Adv Tech 21:490Google Scholar
  36. 36.
    Ciesielski M, Scha¨fer A, Doring M (2008) Polym Adv Tech 19:507CrossRefGoogle Scholar
  37. 37.
    Wang L, Yu J, Tang Z, Jiang P (2010) J Mater Sci 45:6668. doi: https://doi.org/10.1007/s10853-010-4759-y CrossRefGoogle Scholar
  38. 38.
    He Q, Song L, Hu Y, Zhou S (2009) J Mater Sci 44:1308. doi: https://doi.org/10.1007/s10853-009-3266 CrossRefGoogle Scholar
  39. 39.
    Levchik SV, Camino G, Luda MP, Costa L, Muller G, Coates B (1998) Polym Degrad Stab 60:169CrossRefGoogle Scholar
  40. 40.
    Rosa ADL, Recca A, Carter JT, Mc Grail PT (1999) Polymer 40:4093CrossRefGoogle Scholar
  41. 41.
    Liu YL, Hsiue GH, Chiu YS (1997) J Polym Sci A Polym Chem 35:565CrossRefGoogle Scholar
  42. 42.
    Ravikrishnan A, Sudhakara P, Kannan P (2010) J Mater Sci 45:435. doi: https://doi.org/10.1007/s10853-009-3959-9 CrossRefGoogle Scholar
  43. 43.
    Wang CS, Lin CH (1999) J Polym Sci A Polym Chem 37:3903CrossRefGoogle Scholar
  44. 44.
    Sudhakara P, Kannan P (2009) Polym Degrad Stab 94:610CrossRefGoogle Scholar
  45. 45.
    Sudhakara P, Kannan P, Obireddy K, Varada Rajulu A (2011) J Mater Sci. doi: https://doi.org/10.1007/s10853-010-5152-6 CrossRefGoogle Scholar
  46. 46.
    Datta C, Basu D, Banerjee A (2002) J Appl Polym Sci 85:2800CrossRefGoogle Scholar
  47. 47.
    Ratna D, Banthia AK (2007) Polym Eng Sci 47:26CrossRefGoogle Scholar
  48. 48.
    Zhu SW, Shi WF (2003) Polym Degrad Stab 80:217CrossRefGoogle Scholar
  49. 49.
    Liu YLJ (2002) J Polym Sci A Polym Chem 40:359CrossRefGoogle Scholar
  50. 50.
    Van Krevelen DW (1990) Properties of polymers. Elsevier, New YorkGoogle Scholar
  51. 51.
    Levan SL, Winandy JE (1990) Wood Fiber Sci 22:113Google Scholar
  52. 52.
    Stevens R, Van Es DS, Bezemer R, Kranenbarg A (2006) Polym Degrad Stab 91:832CrossRefGoogle Scholar
  53. 53.
    Yeung P, Broutman LJ (1978) Polym Eng Sci 18:62CrossRefGoogle Scholar
  54. 54.
    Manikandan nair KC (2003) Polym Compos 24:332CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • P. Sudhakara
    • 1
  • P. Kannan
    • 1
    Email author
  • K. Obireddy
    • 2
  • A. Varada Rajulu
    • 2
  1. 1.Department of ChemistryAnna UniversityChennaiIndia
  2. 2.Dpartment of Polymer Science and TechnologySri Krishnadevaraya UniversityAnantapurIndia

Personalised recommendations