Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5171–5175 | Cite as

Neutron radiography study of hydrogen desorption in technical iron

  • K. BeyerEmail author
  • T. Kannengiesser
  • A. Griesche
  • B. Schillinger
Article

Abstract

The purpose of the present study is to show the feasibility of examining hydrogen desorption in technical iron samples using neutron radiography at the ANTARES facility of the FRM II research reactor, Technische Universität München. It has been shown that this method is appropriate for in situ determination of hydrogen desorption for concentrations as low as 20 ppmH. Experiments were carried out in the temperature range from room temperature up to 260 °C. Measurement was based on direct comparison between electrochemically hydrogen-loaded iron samples and hydrogen-free reference samples at the same temperature. This enables the determination of hydrogen concentration as a function of time and temperature. Ex situ carrier gas hot extraction experiments using the same temperature–time profiles as the neutron radiography experiments have been used to calibrate the greyscale values of the radiographs to defined hydrogen concentrations. It can be stated that hydrogen desorption correlates with sample temperature.

Keywords

Hydrogen Concentration Transmission Ratio Hydrogen Desorption Titanium Hydride Neutron Radiography 

References

  1. 1.
    Nelson HG (1983) In: Briant CL, Banerji SK (eds) Treatise on materials science and technology, vol 25. Academic, New York, p 275Google Scholar
  2. 2.
    Berkowitz J (1975) Hydrogen induced internal cracking of iron. State University of New York, Stony Brook, New YorkGoogle Scholar
  3. 3.
    Birnbaum HK (1995) Hydrogen related second phase embrittlement of solids. In: Gibala R, Hehemann RF (eds) Hydrogen embrittlement and stress corrosion cracking. ASM Int, Materials Park, p 153Google Scholar
  4. 4.
    Troiano AR (1960) Trans ASM 52:54Google Scholar
  5. 5.
    Stroe ME (2006) Hydrogen embrittlement of ferrous materials. Université Libre de Bruxelles, Brussels. https://doi.org/theses.ulb.ac.be/ETD-db/collection/available/ULBetd-03312006-122217/unrestricted/HydrogenEmbrittlementofFerrousMaterials.pdf. Accessed 08 Feb 2011
  6. 6.
    Zapffe CA, Sims CE (1941) Trans AIME 145:225Google Scholar
  7. 7.
    Oriani RA (1987) Corrosion 43:390CrossRefGoogle Scholar
  8. 8.
    Oriani RA (1995) In: Gibala R, Hehemann RF (eds) Hydrogen embrittlement and stress corrosion cracking. ASM Int, Materials Park, pp 43–59Google Scholar
  9. 9.
    Birnbaum HK, Sofronis P (1994) Mat Sci Eng A 176:191CrossRefGoogle Scholar
  10. 10.
    Petch NJ, Stables P (1952) Nature 169:842CrossRefGoogle Scholar
  11. 11.
    Geberich WW, Stauffer DD, Sofronis P (2008) In: Somerday B, Sofronis P, Jones R (eds) Effects of hydrogen on materials, 1st edn. ASM Int, Materials ParkGoogle Scholar
  12. 12.
    Dadfarnia M, Novak P, Ahn DC, Liu JB, Sofronis P, Johnson DD, Robertson IM (2010) Adv Mater 22:1128CrossRefGoogle Scholar
  13. 13.
    Olden V, Thaulow C, Johnson R (2008) Mater Des 29:1934CrossRefGoogle Scholar
  14. 14.
    Hirth JP (1980) Metall Trans 11A:861CrossRefGoogle Scholar
  15. 15.
    Quick NR, Johnson HH (1979) Metall Trans 10A:67CrossRefGoogle Scholar
  16. 16.
    Ried P, Gaber M, Beyer K, Müller R, Kipphardt H, Kannengiesser T (2011) Steel Res Int 82:14CrossRefGoogle Scholar
  17. 17.
    Robertson IM, Birnbaum HK (1986) Acta Metall Mater 34:353CrossRefGoogle Scholar
  18. 18.
    Barnoush A, Bies C, Vehoff H (2008) J Mater Res 24:1105CrossRefGoogle Scholar
  19. 19.
    Barnoush A, Zamanzade M, Vehoff H (2010) Scr Mater 62:242CrossRefGoogle Scholar
  20. 20.
    Bergers K, Camisão de Souza E, Thomas I, Mabho N, Flock J (2010) Steel Res Int 81:499CrossRefGoogle Scholar
  21. 21.
    Dabah E, Lisitsyn V, Eliezer D (2010) Mater Sci Eng A 527:4851CrossRefGoogle Scholar
  22. 22.
    Balaskó M, Sva E, Kuba A, Kiss Z, Rodek L, Nagy A (2005) Nucl Instrum Methods A 542:302CrossRefGoogle Scholar
  23. 23.
    Lehmann EH, Vontobel P, Kardjilov N (2004) Appl Radiat Isot 61:503CrossRefGoogle Scholar
  24. 24.
    Sakaguchi H, Kohzai A, Hatakeyama K, Fujine S, Yoneda K, Kanda K, Esaka T (2000) Int J Hydrog Energy 25:1205CrossRefGoogle Scholar
  25. 25.
    Sakaguchi H, Satake Y, Hatakeyama K, Fujine S, Yoneda K, Matsubayashi M, Esaka T (2003) J Alloy Compd 54:208CrossRefGoogle Scholar
  26. 26.
    Schröder A, Wippermann K, Mergel J, Lehnert W, Stolten D, Sanders T, Baumhöfer T, Sauer DU, Manke I, Kardjilov N, Hilger A, Schloes J, Bahnhart J, Hartnig C (2009) Electrochem Commun 11:1606CrossRefGoogle Scholar
  27. 27.
    Crank J (1975) The mathematics of diffusion. Clarendon, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • K. Beyer
    • 1
    Email author
  • T. Kannengiesser
    • 1
  • A. Griesche
    • 1
  • B. Schillinger
    • 2
  1. 1.BAM Federal Institute for Materials Research and TestingBerlinGermany
  2. 2.Technische Universität München, FRM IIGarchingGermany

Personalised recommendations