Modeling the effect of reinforcement discontinuity on the tensile strength of UD flax fiber composites
- 261 Downloads
- 6 Citations
Abstract
To exploit the potential of natural fibers as reinforcement of polymer matrix composites, aligned bast fiber composite materials are being produced and studied. Bast fiber reinforcement is discontinuous due to the limited length of natural fibers, which needs to be reflected in predictive models of mechanical properties of composites. The strength in tension in the fiber direction of an aligned flax fiber-reinforced composite is modeled assuming that a cluster of adjacent fiber discontinuities is the origin of fracture. A probabilistic model of tensile strength, developed for UD composites containing a microdefect, is applied. It follows from the theoretical analysis that the experimental tensile strength as a function the fiber volume fraction can be described with acceptable accuracy assuming the presence of a cluster of ca. 4 × 4 elementary fiber discontinuities.
Keywords
Fiber Volume Fraction Fiber Strength Strength Distribution Flax Fiber Bast FiberNotes
Acknowledgements
E. Spārniņš and J. Andersons acknowledge funding by ESF via project 2009/0209/1DP/1.1.1.2.0/09/APIA/VIAA/114. J. Andersons gratefully acknowledges the support by the DAAD which provided the opportunity for a research stay at the Institute of General Mechanics of the RWTH Aachen University. Authors are thankful to Mr. Alann Andre for help with manufacturing of samples and experimental work.
References
- 1.Hill C, Hughes M (2010) J Biobased Mater Bioenergy 4:148CrossRefGoogle Scholar
- 2.Gassan J, Mildner I, Bledzki AK (1999) Mech Compos Mater 35:435CrossRefGoogle Scholar
- 3.Madsen B, Lilholt H (2003) Compos Sci Technol 63:1265CrossRefGoogle Scholar
- 4.Chabba S, Netravali AN (2004) JSME Int J Ser A 47:556CrossRefGoogle Scholar
- 5.Chabba S, Netravali AN (2005) J Mater Sci 40:6275. doi: https://doi.org/10.1007/s10853-005-3143-9 CrossRefGoogle Scholar
- 6.Angelov I, Wiedmer S, Evstatiev M, Friedrich K, Mennig G (2007) Compos A 38:1431CrossRefGoogle Scholar
- 7.Van de Weyenberg I, Chi Truong T, Vangrimde B, Verpoest I (2006) Compos A 37:1368CrossRefGoogle Scholar
- 8.Goutianos S, Peijs T, Nystrom B, Skrifvars M (2006) Appl Compos Mater 13:199CrossRefGoogle Scholar
- 9.Zhang L, Miao M (2010) Compos Sci Technol 70:130CrossRefGoogle Scholar
- 10.Andersons J, Joffe R (2010) Compos A (submitted)Google Scholar
- 11.Dissanayake NPJ, Summerscales J, Grove SM, Singh MM (2009) J Biobased Mater Bioenergy 3:245CrossRefGoogle Scholar
- 12.Lilholt H, Lawther JM (2000) In: Kelly A, Zweben C (eds) Comprehensive composite materials, vol 1. Pergamon Press, New York, p 303CrossRefGoogle Scholar
- 13.Charlet K, Jernot JP, Eve S, Gomina M, Bréard J (2010) Carbohydr Polym 82:54CrossRefGoogle Scholar
- 14.Charlet K, Jernot JP, Bréard J, Gomina M (2010) Ind Crops Prod 32:220CrossRefGoogle Scholar
- 15.Bos HL, van den Oever MJA, Peters OCJJ (2002) J Mater Sci 37:1683. doi: https://doi.org/10.1023/A:1014925621252 CrossRefGoogle Scholar
- 16.Romhány G, Karger-Kocsis J, Czigány T (2003) J Appl Poly Sci 90:3638CrossRefGoogle Scholar
- 17.Davies GC, Bruce DM (1998) Textile Res J 68:623CrossRefGoogle Scholar
- 18.Zafeiropoulos NE, Baillie CA (2007) Compos A 38:629CrossRefGoogle Scholar
- 19.Andersons J, Spārniņš E, Joffe R (2009) J Mater Sci 44:685. doi: https://doi.org/10.1007/s10853-008-3171-3 CrossRefGoogle Scholar
- 20.Andersons J, Spārniņš E, Joffe R, Wallström L (2005) Compos Sci Technol 65:693CrossRefGoogle Scholar
- 21.Andersons J, Poriķe E, Spārniņš E (2009) Compos Sci Technol 69:2152CrossRefGoogle Scholar
- 22.Andersons J, Spārniņš E, Poriķe E (2009) J Compos Mater 43:2653CrossRefGoogle Scholar
- 23.Gutans JA, Tamuzh VP (1984) Mech Compos Mater 21:1107 (in Russian)Google Scholar
- 24.Watson AS, Smith RL (1985) J Mater Sci 20:3260. doi: https://doi.org/10.1007/BF00545193 CrossRefGoogle Scholar
- 25.Curtin WA (2000) J Compos Mater 34:1301CrossRefGoogle Scholar
- 26.Thygesen LG, Eder M, Burgert I (2007) J Mater Sci 42:558. doi: https://doi.org/10.1007/s10853-006-1113-5 CrossRefGoogle Scholar
- 27.Zhou SJ, Curtin WA (1995) Acta Metall Mater 43:3093CrossRefGoogle Scholar
- 28.Ibnabdeljalil M, Curtin WA (1997) Int J Solids Struct 34:2649CrossRefGoogle Scholar
- 29.Huang H, Talreja R (2006) Compos Sci Technol 66:2743CrossRefGoogle Scholar
- 30.Fukuda H, Chou T-W (1981) J Mater Sci 16:1088. doi: https://doi.org/10.1007/BF00542756 CrossRefGoogle Scholar
- 31.Hikami F, Chou T-W (1984) J Mater Sci 19:1805. doi: https://doi.org/10.1007/BF00550251 CrossRefGoogle Scholar
- 32.Nishikawa M, Okabe T, Takeda N (2009) Adv Compos Mater 18:77CrossRefGoogle Scholar
- 33.Okabe T, Takeda N, Nishikawa M (2010) Int J Damage Mech 19:339CrossRefGoogle Scholar
- 34.Zweben C (1971) J Mech Phys Solids 19:103CrossRefGoogle Scholar
- 35.Beyerlein J, Phoenix SL (1997) Eng Fract Mech 57:241CrossRefGoogle Scholar
- 36.Beyerlein J, Phoenix SL (1997) Eng Fract Mech 57:267CrossRefGoogle Scholar
- 37.Ibnabdeljalil M, Curtin WA (1997) Acta Mater 45:3641CrossRefGoogle Scholar
- 38.Andersons J, Spārniņš E, Joffe R (2010) J Compos Mater (submitted)Google Scholar
- 39.Andre A (2004) Project Report, Luleå University of Technology, p 71Google Scholar
- 40.Phoenix SL, Beyerlein IJ (2000) In: Kelly A, Zweben C (eds) Comprehensive composite materials, vol 1. Elsevier, Amsterdam, p 559CrossRefGoogle Scholar
- 41.Thouless MD, Evans AG (1988) Acta Metall 36:517CrossRefGoogle Scholar
- 42.Thomason JL (2009) In: Proceedings of ICCM-17, 27–31 July 2009, Edinburgh, UKGoogle Scholar
- 43.Thomason JL (2010) Polym Compos 31:1525CrossRefGoogle Scholar
- 44.Oksman K (2001) J Reinf Plast Compos 20:621CrossRefGoogle Scholar
- 45.Joffe R, Andersons J, Wallström L (2005) J Mater Sci 40:2721. doi: https://doi.org/10.1007/s10853-005-2115-4 CrossRefGoogle Scholar
- 46.Hedgepeth JM, Van Dyke P (1967) J Compos Mater 1:294CrossRefGoogle Scholar
- 47.Requena G, Fiedler G, Seiser B, Degischer P, di Michiel M, Buslaps T (2009) Compos A 40:152CrossRefGoogle Scholar
- 48.Pyrz R (1994) Compos Sci Technol 50:197CrossRefGoogle Scholar
- 49.Silberschmidt VV (2006) J Mater Sci 41:6768. doi: https://doi.org/10.1007/s10853-006-0205-6 CrossRefGoogle Scholar
- 50.Pyrz R, Bochenek B (1998) lnt J Solids Struct 35:2413CrossRefGoogle Scholar
- 51.Kushch VI, Shmegera SV, Mishnaevsky L (2009) J Mech Mater Struct 4:1089CrossRefGoogle Scholar
- 52.Landis CM, McMeeking RM (1999) Int J Solids Struct 36:4333CrossRefGoogle Scholar
- 53.Patel HK, Ren G, Hogg PJ, Peijs T (2010) Plast Rubber Compos 39:268CrossRefGoogle Scholar
- 54.de Almeida SFM, Neto ZSN (1994) Compos Struct 28:139CrossRefGoogle Scholar
- 55.Liu L, Zhang B, Wu Z, Wang D (2005) J Mater Sci Technol 21:87Google Scholar
- 56.Madsen B, Hoffmeyer P, Lilholt H (2007) Compos A 38:2204CrossRefGoogle Scholar
- 57.Guo Z-S, Liu L, Zhang B-M, Du S (2009) J Compos Mater 43:1775CrossRefGoogle Scholar