Journal of Materials Science

, Volume 46, Issue 15, pp 5104–5110 | Cite as

Modeling the effect of reinforcement discontinuity on the tensile strength of UD flax fiber composites

  • J. AndersonsEmail author
  • R. Joffe
  • E. Spārniņš
  • D. Weichert


To exploit the potential of natural fibers as reinforcement of polymer matrix composites, aligned bast fiber composite materials are being produced and studied. Bast fiber reinforcement is discontinuous due to the limited length of natural fibers, which needs to be reflected in predictive models of mechanical properties of composites. The strength in tension in the fiber direction of an aligned flax fiber-reinforced composite is modeled assuming that a cluster of adjacent fiber discontinuities is the origin of fracture. A probabilistic model of tensile strength, developed for UD composites containing a microdefect, is applied. It follows from the theoretical analysis that the experimental tensile strength as a function the fiber volume fraction can be described with acceptable accuracy assuming the presence of a cluster of ca. 4 × 4 elementary fiber discontinuities.


Fiber Volume Fraction Fiber Strength Strength Distribution Flax Fiber Bast Fiber 



E. Spārniņš and J. Andersons acknowledge funding by ESF via project 2009/0209/1DP/ J. Andersons gratefully acknowledges the support by the DAAD which provided the opportunity for a research stay at the Institute of General Mechanics of the RWTH Aachen University. Authors are thankful to Mr. Alann Andre for help with manufacturing of samples and experimental work.


  1. 1.
    Hill C, Hughes M (2010) J Biobased Mater Bioenergy 4:148CrossRefGoogle Scholar
  2. 2.
    Gassan J, Mildner I, Bledzki AK (1999) Mech Compos Mater 35:435CrossRefGoogle Scholar
  3. 3.
    Madsen B, Lilholt H (2003) Compos Sci Technol 63:1265CrossRefGoogle Scholar
  4. 4.
    Chabba S, Netravali AN (2004) JSME Int J Ser A 47:556CrossRefGoogle Scholar
  5. 5.
    Chabba S, Netravali AN (2005) J Mater Sci 40:6275. doi: CrossRefGoogle Scholar
  6. 6.
    Angelov I, Wiedmer S, Evstatiev M, Friedrich K, Mennig G (2007) Compos A 38:1431CrossRefGoogle Scholar
  7. 7.
    Van de Weyenberg I, Chi Truong T, Vangrimde B, Verpoest I (2006) Compos A 37:1368CrossRefGoogle Scholar
  8. 8.
    Goutianos S, Peijs T, Nystrom B, Skrifvars M (2006) Appl Compos Mater 13:199CrossRefGoogle Scholar
  9. 9.
    Zhang L, Miao M (2010) Compos Sci Technol 70:130CrossRefGoogle Scholar
  10. 10.
    Andersons J, Joffe R (2010) Compos A (submitted)Google Scholar
  11. 11.
    Dissanayake NPJ, Summerscales J, Grove SM, Singh MM (2009) J Biobased Mater Bioenergy 3:245CrossRefGoogle Scholar
  12. 12.
    Lilholt H, Lawther JM (2000) In: Kelly A, Zweben C (eds) Comprehensive composite materials, vol 1. Pergamon Press, New York, p 303CrossRefGoogle Scholar
  13. 13.
    Charlet K, Jernot JP, Eve S, Gomina M, Bréard J (2010) Carbohydr Polym 82:54CrossRefGoogle Scholar
  14. 14.
    Charlet K, Jernot JP, Bréard J, Gomina M (2010) Ind Crops Prod 32:220CrossRefGoogle Scholar
  15. 15.
    Bos HL, van den Oever MJA, Peters OCJJ (2002) J Mater Sci 37:1683. doi: CrossRefGoogle Scholar
  16. 16.
    Romhány G, Karger-Kocsis J, Czigány T (2003) J Appl Poly Sci 90:3638CrossRefGoogle Scholar
  17. 17.
    Davies GC, Bruce DM (1998) Textile Res J 68:623CrossRefGoogle Scholar
  18. 18.
    Zafeiropoulos NE, Baillie CA (2007) Compos A 38:629CrossRefGoogle Scholar
  19. 19.
    Andersons J, Spārniņš E, Joffe R (2009) J Mater Sci 44:685. doi: CrossRefGoogle Scholar
  20. 20.
    Andersons J, Spārniņš E, Joffe R, Wallström L (2005) Compos Sci Technol 65:693CrossRefGoogle Scholar
  21. 21.
    Andersons J, Poriķe E, Spārniņš E (2009) Compos Sci Technol 69:2152CrossRefGoogle Scholar
  22. 22.
    Andersons J, Spārniņš E, Poriķe E (2009) J Compos Mater 43:2653CrossRefGoogle Scholar
  23. 23.
    Gutans JA, Tamuzh VP (1984) Mech Compos Mater 21:1107 (in Russian)Google Scholar
  24. 24.
    Watson AS, Smith RL (1985) J Mater Sci 20:3260. doi: CrossRefGoogle Scholar
  25. 25.
    Curtin WA (2000) J Compos Mater 34:1301CrossRefGoogle Scholar
  26. 26.
    Thygesen LG, Eder M, Burgert I (2007) J Mater Sci 42:558. doi: CrossRefGoogle Scholar
  27. 27.
    Zhou SJ, Curtin WA (1995) Acta Metall Mater 43:3093CrossRefGoogle Scholar
  28. 28.
    Ibnabdeljalil M, Curtin WA (1997) Int J Solids Struct 34:2649CrossRefGoogle Scholar
  29. 29.
    Huang H, Talreja R (2006) Compos Sci Technol 66:2743CrossRefGoogle Scholar
  30. 30.
    Fukuda H, Chou T-W (1981) J Mater Sci 16:1088. doi: CrossRefGoogle Scholar
  31. 31.
    Hikami F, Chou T-W (1984) J Mater Sci 19:1805. doi: CrossRefGoogle Scholar
  32. 32.
    Nishikawa M, Okabe T, Takeda N (2009) Adv Compos Mater 18:77CrossRefGoogle Scholar
  33. 33.
    Okabe T, Takeda N, Nishikawa M (2010) Int J Damage Mech 19:339CrossRefGoogle Scholar
  34. 34.
    Zweben C (1971) J Mech Phys Solids 19:103CrossRefGoogle Scholar
  35. 35.
    Beyerlein J, Phoenix SL (1997) Eng Fract Mech 57:241CrossRefGoogle Scholar
  36. 36.
    Beyerlein J, Phoenix SL (1997) Eng Fract Mech 57:267CrossRefGoogle Scholar
  37. 37.
    Ibnabdeljalil M, Curtin WA (1997) Acta Mater 45:3641CrossRefGoogle Scholar
  38. 38.
    Andersons J, Spārniņš E, Joffe R (2010) J Compos Mater (submitted)Google Scholar
  39. 39.
    Andre A (2004) Project Report, Luleå University of Technology, p 71Google Scholar
  40. 40.
    Phoenix SL, Beyerlein IJ (2000) In: Kelly A, Zweben C (eds) Comprehensive composite materials, vol 1. Elsevier, Amsterdam, p 559CrossRefGoogle Scholar
  41. 41.
    Thouless MD, Evans AG (1988) Acta Metall 36:517CrossRefGoogle Scholar
  42. 42.
    Thomason JL (2009) In: Proceedings of ICCM-17, 27–31 July 2009, Edinburgh, UKGoogle Scholar
  43. 43.
    Thomason JL (2010) Polym Compos 31:1525CrossRefGoogle Scholar
  44. 44.
    Oksman K (2001) J Reinf Plast Compos 20:621CrossRefGoogle Scholar
  45. 45.
    Joffe R, Andersons J, Wallström L (2005) J Mater Sci 40:2721. doi: CrossRefGoogle Scholar
  46. 46.
    Hedgepeth JM, Van Dyke P (1967) J Compos Mater 1:294CrossRefGoogle Scholar
  47. 47.
    Requena G, Fiedler G, Seiser B, Degischer P, di Michiel M, Buslaps T (2009) Compos A 40:152CrossRefGoogle Scholar
  48. 48.
    Pyrz R (1994) Compos Sci Technol 50:197CrossRefGoogle Scholar
  49. 49.
    Silberschmidt VV (2006) J Mater Sci 41:6768. doi: CrossRefGoogle Scholar
  50. 50.
    Pyrz R, Bochenek B (1998) lnt J Solids Struct 35:2413CrossRefGoogle Scholar
  51. 51.
    Kushch VI, Shmegera SV, Mishnaevsky L (2009) J Mech Mater Struct 4:1089CrossRefGoogle Scholar
  52. 52.
    Landis CM, McMeeking RM (1999) Int J Solids Struct 36:4333CrossRefGoogle Scholar
  53. 53.
    Patel HK, Ren G, Hogg PJ, Peijs T (2010) Plast Rubber Compos 39:268CrossRefGoogle Scholar
  54. 54.
    de Almeida SFM, Neto ZSN (1994) Compos Struct 28:139CrossRefGoogle Scholar
  55. 55.
    Liu L, Zhang B, Wu Z, Wang D (2005) J Mater Sci Technol 21:87Google Scholar
  56. 56.
    Madsen B, Hoffmeyer P, Lilholt H (2007) Compos A 38:2204CrossRefGoogle Scholar
  57. 57.
    Guo Z-S, Liu L, Zhang B-M, Du S (2009) J Compos Mater 43:1775CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. Andersons
    • 1
    Email author
  • R. Joffe
    • 2
  • E. Spārniņš
    • 1
  • D. Weichert
    • 3
  1. 1.Institute of Polymer Mechanics (IPM)University of LatviaRīgaLatvia
  2. 2.Division of Polymer EngineeringLuleå University of Technology (LTU)LuleåSweden
  3. 3.Institute of General MechanicsRWTH-Aachen UniversityAachenGermany

Personalised recommendations