Journal of Materials Science

, Volume 46, Issue 22, pp 7144–7151 | Cite as

Structure sensitivity of methanol decomposition on Ni/SiO2 catalysts

  • Mihail MihaylovEmail author
  • Tanya Tsoncheva
  • Konstantin Hadjiivanov
Size Dependent Effects


Three different silica-supported nickel samples were prepared by successive adsorption, reduction, and passivation (SARP) of nickel. The materials obtained were characterized by various techniques (TEM, XRD, H2 chemisorption, FTIR spectroscopy of adsorbed CO, FMR). Metal nickel particles were uniformly distributed by size with all samples. With increasing the number SARP cycles (1, 3, and 5, respectively) the metal concentration (3.6, 7.6, and 12.6 wt%, respectively) and the mean particle size (4–5, ca. 6 and ca. 7 nm, respectively) also increased without substantial increase of the number of metal particles. The samples were tested as catalysts in methanol decomposition to CO and H2. It was found that this reaction was structure sensitive and the turn-over frequency decreased with the particle size increase. In contrast, the secondary interaction between the reaction products, i.e., CO methanation (occurring above 515 K) appears to be structure insensitive.


Metal Particle Passivated Sample Nickel Particle Structure Sensitivity Metal Particle Size 



This study was supported by the Bulgarian Scientific Fund (Grants 02-290/2008 and DCVP 02/2009). The authors thank Dr. M. Shopska for her assistance with the H2 chemisorption measurements.


  1. 1.
    Bond GC (2003) In: Cornils B, Herrmann WA, Slögl R, Wong C-H (eds) Catalysis from A to Z, 2nd edn. Wiley–VCH, Weinheim, p 728Google Scholar
  2. 2.
    Che M, Bennett CO (1989) Adv Catal 38:55Google Scholar
  3. 3.
    Dumesic JA, George WH, Boudart M (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley VCH, Weinheim, p 1446Google Scholar
  4. 4.
    Heiz U, Landman U (eds) (2007) Nanocatalysis. Springer, New YorkGoogle Scholar
  5. 5.
    Hou Z, Gao J, Guo J, Liang D, Lou H, Zheng X (2007) J Catal 250:331CrossRefGoogle Scholar
  6. 6.
    Guo J, Hou Z, Gao J, Zheng X (2008) Energy Fuel 22:1444CrossRefGoogle Scholar
  7. 7.
    Marceau E, Carrier X, Che M, Clause O, Marcilly C (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley VCH, Weinheim, p 467Google Scholar
  8. 8.
    Schwarz JA, Contescu C, Contescu A (1995) Chem Rev 95:477CrossRefGoogle Scholar
  9. 9.
    Hadjiivanov K, Mihaylov M, Abadjieva N, Klissurski D (1998) J Chem Soc Faraday Trans 94:3711CrossRefGoogle Scholar
  10. 10.
    Hadjiivanov K, Saint-Just J, Che M, Tatibouet J-M, Lamotte J, Lavalley JC (1994) J Chem Soc Faraday Trans 90:2277CrossRefGoogle Scholar
  11. 11.
    Haller GL, Resasco DE (1989) Adv Catal 36:173Google Scholar
  12. 12.
    Hadjiivanov K, Mihaylov M, Klissurski D, Stefanov P, Abadjieva N, Vassileva E, Mintchev L (1999) J Catal 185:314CrossRefGoogle Scholar
  13. 13.
    Mihaylov M, Hadjiivanov K, Klissurski D (2000) In: Proceedings of IX international symposium heterogeneous catalysis, Varna, p 387Google Scholar
  14. 14.
    Agrell J, Lindstroem B, Pettersson LJ, Jaras S (2002) In: Spivey JJ (ed) Catalysis, vol 16. Royal Society of Chemistry, Cambridge, p 272Google Scholar
  15. 15.
    Navarro RM, Peňa MA, Fierro JLG (2007) Chem Rev 107:3952CrossRefGoogle Scholar
  16. 16.
    Matsumura Y, Tanaka K, Tode N, Yazawa T, Haruta M (2000) J Mol Catal A 152:157CrossRefGoogle Scholar
  17. 17.
    Matsumura Y, Tode N (2001) Phys Chem Chem Phys 3:1284CrossRefGoogle Scholar
  18. 18.
    Eigenberger G (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley VCH, Weinheim, p 2085Google Scholar
  19. 19.
    Harms A, Høhlein B, Jørn E, Skov A (1980) Oil Gas J 78:120Google Scholar
  20. 20.
    Dry M (2004) Appl Catal A Gen 276:1CrossRefGoogle Scholar
  21. 21.
    Goodman JG Jr, Kim S, Rhodes WD (2004) In: Spivey JJ (ed) Catalysis, vol 17. Royal Society of Chemistry, Cambridge, p 326Google Scholar
  22. 22.
    Kelley RD, Goodman DW (1982) In: King DA, Woodruff DP (eds) Chemical physics of solid surface and heterogeneous catalysis, vol 4. Elsevier, Amsterdam, p 427Google Scholar
  23. 23.
    Rostrup-Nielsen JR, Pedersen K, Sehested J (2007) Appl Catal A Gen 330:134CrossRefGoogle Scholar
  24. 24.
    Andersson MP, Abild-Pedersena F, Remediakis IN, Bligaard T, Jones G, Engbæk J, Lytken O, Horcha S, Nielsenb JH, Sehested J, Rostrup-Nielsen JR, Nørskov JK, Chorkendorff I (2008) J Catal 255:6CrossRefGoogle Scholar
  25. 25.
    Bergeret G, Gallezot P (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley VCH, Weinheim, p 738Google Scholar
  26. 26.
    Slinkin AA (1968) Usp Khim 37:1521CrossRefGoogle Scholar
  27. 27.
    Davydov AA (2003) In: Sheppard NT (ed) Molecular spectroscopy of oxide catalyst surfaces. Wiley, ChichesterCrossRefGoogle Scholar
  28. 28.
    Hadjiivanov K, Vayssilov G (2002) Adv Catal 47:307Google Scholar
  29. 29.
    Hadjiivanov K, Knözinger H, Mihaylov M (2002) J Phys Chem B 106:2618CrossRefGoogle Scholar
  30. 30.
    Penkova A, Dzwigaj S, Kefirov R, Hadjiivanov K, Che M (2007) J Phys Chem C 111:8623CrossRefGoogle Scholar
  31. 31.
    Hierl R, Knözinger H (1981) J Catal 69:475CrossRefGoogle Scholar
  32. 32.
    Duchet JC, Lavalley JC, Housni S, Ouafi D, Bachelier J, Lakhdar M, Mennour M, Cornet D (1988) Catal Today 4:71CrossRefGoogle Scholar
  33. 33.
    Anderson JA, Daza L, Fierro JLG, Rodrigo MT (1993) J Chem Soc Faraday Trans 89:3651CrossRefGoogle Scholar
  34. 34.
    Borello E, Cimino A, Ghiotti G, Jacono ML, Schiavello M, Zecchina A (1971) Discuss Faraday Soc 52:149CrossRefGoogle Scholar
  35. 35.
    Mihaylov M, Hadjiivanov K, Knözinger H (2001) Catal Lett 76:59CrossRefGoogle Scholar
  36. 36.
    Mohana Rao K, Spoto G, Zecchina A (1989) Langmuir 5:319CrossRefGoogle Scholar
  37. 37.
    Wendland K-P, Bremer H, Vogt F, Reshitlovski WP, Mörke W, Hobert H, Weber M, Becker K (1987) Appl Catal 31:65CrossRefGoogle Scholar
  38. 38.
    Sheppard N, Nguyen TT (1978) In: Clarke PJ, Hester RE (eds) Advances in Infrared and Raman Spectroscopy, vol. 5. Wiley, New York, p 67Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mihail Mihaylov
    • 1
    Email author
  • Tanya Tsoncheva
    • 2
  • Konstantin Hadjiivanov
    • 1
  1. 1.Institute of General and Inorganic Chemistry, Bulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Organic Chemistry with a Centre of Phytochemistry, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations