Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5085–5089 | Cite as

Ultra-sharp pointed tip Si nanowires produced by very high frequency plasma enhanced chemical vapor deposition via VLS mechanism

  • Habib HamidinezhadEmail author
  • Yussof Wahab
  • Zulkafli Othaman
Article

Abstract

Needle-like silicon nanowires have been grown using gold colloid as the catalyst and silane (SiH4) as the precursor by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). Si nanowires produced by this method were unique with sharpness below 3 nm. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction technique (XRD) confirmed the single crystalline growth of the Si nanowires with (111) crystalline structure. Raman spectroscopy also has revealed the presence of crystalline Si in the grown Si nanowire body. In this research, presence of a gold nanoparticle on tip of the nanowires proved vapor–liquid–solid growth mechanism.

Keywords

High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy SiH4 Plasma Enhance Chemical Vapor Deposition High Resolution Transmission Electron Microscopy Image 

References

  1. 1.
    Morales AM, Lieber CM (1998) Science 279:208CrossRefGoogle Scholar
  2. 2.
    Cao L, Park JS, Fan P, Clemens B, Brongersma ML (2010) Nano Lett 10(4):1229CrossRefGoogle Scholar
  3. 3.
    Cao L, Fan P, Barnard ES, Brown AM, Brongersma ML (2010) Nano Lett 10(7):2649CrossRefGoogle Scholar
  4. 4.
    Shan Y, Fonash SJ (2008) ACS Nano 2(3):429CrossRefGoogle Scholar
  5. 5.
    Najmzadeh M, Michielis LD, Bouvet D, Dobrosz P, Olsen S, Ionescu AM (2010) Microelectron Eng 87:1561CrossRefGoogle Scholar
  6. 6.
    Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Electroanalysis 18(6):533CrossRefGoogle Scholar
  7. 7.
    Li Q, Koo SM, Edelstein MD, Suehle JS, Richter CA (2007) Nanotechnology 18:315202 (5 pp)CrossRefGoogle Scholar
  8. 8.
    Kelzenberg MD, Turner-Evans DB, Kayes BM, Filler MA, Putnam MC, Lewis NS, Atwater HA (2008) Nano Lett 8(2):710CrossRefGoogle Scholar
  9. 9.
    Olinga TE, Frayasse J, Travers JP, Dufresne A, Pron A (2000) Macromolecules 33:2107CrossRefGoogle Scholar
  10. 10.
    Zhang YF, Tang YH, Wang N, Yu DP, Lee CS, Bello I, Lee ST (1998) Appl Phys Lett 72:1835CrossRefGoogle Scholar
  11. 11.
    Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Science 287:1471CrossRefGoogle Scholar
  12. 12.
    Zhang YF, Tang YH, Lam C, Wang N, Lee CS, Bello I, Lee ST (2000) J Cryst Growth 212:115CrossRefGoogle Scholar
  13. 13.
    Peng K, Xu Y, Wu Y, Yan Y, Lee ST, Zhu J (2005) Small 1:1062CrossRefGoogle Scholar
  14. 14.
    Wu Y, Chi Y, Huynh L, Barrelet CJ, Bell DC, Lieber CM (2004) Nano Lett 4:433CrossRefGoogle Scholar
  15. 15.
    Hofmann S, Ducati C, Neill RJ, Piscanec S, Ferrari AC, Geng J, Dunin-Borkowski RE, Robertson J (2003) J Appl Phys 94(9):6005CrossRefGoogle Scholar
  16. 16.
    Wagner RS, Ellis WC (1964) Appl Phys Lett 4:89CrossRefGoogle Scholar
  17. 17.
    Paulo AS, Arellano N, He R, Carraro C, Maboudian R, Howe R, Bokor J, Yang P (2007) Nano Lett 7:1100CrossRefGoogle Scholar
  18. 18.
    Shah A, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz S, Graf U (2005) Sol Energy Mater Sol Cells 78:469CrossRefGoogle Scholar
  19. 19.
    Takatsuka H, Noda M, Yonekura Y, Takeuchi Y, Yamauchi Y (2004) Sol Energy 77:951CrossRefGoogle Scholar
  20. 20.
    Gentile P, David T, Dhalluin F, Buttard D, Pauc N, Hertog MD, Ferret P, Baron T (2008) Nanotechnology 19:125608CrossRefGoogle Scholar
  21. 21.
    Niu JJ, Wang JN (2008) Mater Lett 62:767CrossRefGoogle Scholar
  22. 22.
    Červenka J, Ledinský M, Stuchlíková H, Stuchlík J, Výborný Z, Holovský J, Hruška K, Fejfar A, Kočka J (2010) Phys Status Solidi RRL 4(1–2):37CrossRefGoogle Scholar
  23. 23.
    Cui Y, Lauhon LJ, Gudiksen MS, Wang J, Lieber CM (2001) Appl Phys Lett 78:2214CrossRefGoogle Scholar
  24. 24.
    Salhi B, Grandidier B, Boukherroub R (2006) J Electroceram 16:15CrossRefGoogle Scholar
  25. 25.
    Jeon M, Kamisako K (2009) Met Mater Int 15:83CrossRefGoogle Scholar
  26. 26.
    Woo RL, Gao L, Goel N, Hudait MK, Wang KL, Kodambaka S, Hicks RF (2009) Nano Lett 9(6):2207CrossRefGoogle Scholar
  27. 27.
    Adu KW, Gutierrez HR, Eklund PC (2006) Vib Spectrosc 42:165CrossRefGoogle Scholar
  28. 28.
    Yu DP, Bai ZG, Ding Y, Hang QL, Zhang HZ, Wang JJ, Zou YH, Qian W, Xiong GC, Zhou HT, Feng SQ (1998) Appl Phys Lett 72:3458CrossRefGoogle Scholar
  29. 29.
    Adu KW, Guti’errez HR, Kim UJ, Sumanasekera GU, Eklund PC (2005) Nano Lett 5:409CrossRefGoogle Scholar
  30. 30.
    Lugstein A, Hyun YJ, Steinmair M, Dielacher B, Hauer G, Bertagnolli E (2008) Nanotechnology 19:485606CrossRefGoogle Scholar
  31. 31.
    Becker M, Sivakov V, Gösele U, Stelzner T, Andrä G, Reich HJ, Hoffmann S, Michler J, Christiansen SH (2008) Small 4:398CrossRefGoogle Scholar
  32. 32.
    Kikkawa J, Ohno Y, Takeda S (2005) Appl Phys Lett 86:739CrossRefGoogle Scholar
  33. 33.
    Au CK, Wong KW, Tang YH, Zhang YF, Bello I, Lee ST (1999) Appl Phys Lett 75:1700CrossRefGoogle Scholar
  34. 34.
    Chuen YL, Chou LJ, Hsu CM, Kung SC (2005) J Phys Chem B 109:21831CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Habib Hamidinezhad
    • 1
    Email author
  • Yussof Wahab
    • 1
  • Zulkafli Othaman
    • 1
  1. 1.Ibnu Sina Institute for Fundamental Science Studies (IIS), UTMSkudaiMalaysia

Personalised recommendations