Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5029–5043 | Cite as

Photo-switching and nonlinear optical behaviors of center linked bent-core azobenzene liquid crystalline polymers

  • M. Vijay Srinivasan
  • P. KannanEmail author
Article

Abstract

A new class of two series (I and II) of center linked bent-core azobenzene liquid crystalline polymers were prepared. They were prepared from two different spacer lengths (2 and 10) between polymer backbone and bent-core mesogen. The bent-core mesogen possesses photoactive linking group with variable terminal chains (7, 8, and 9). The synthesized precursors, monomers, and polymers were characterized by FT-IR, 1H NMR, and 13C NMR spectroscopy. Thermal stability of polymers was examined by thermogravimetric analysis. The mesophase transition of monomers and polymers were observed through polarized optical microscopy, and confirmed by differential scanning calorimetry. Among the two series of polymers, the second series of polymers possesses liquid crystalline properties. The photo-switching properties of bent-core azo polymers were investigated using UV–Vis spectroscopy, trans to cis isomerization occurs around 35 s in chloroform and 65 s in thin film, where as reverse processes take place almost 32 h in chloroform. The photo-switching processes of polymer IIa precedes faster and also longer time thermally stable when compared with recently reported similar polymers. Negative optical nonlinear refractive index and optical limiting properties of the polymers were measured using Nd-YAG laser.

Keywords

CDCl3 Azobenzene Benzonitrile Polarize Optical Microscope Liquid Crystalline Polymer 

Notes

Acknowledgements

The authors sincerely acknowledges to Council of Scientific and Industrial Research (CSIR), New Delhi, India [CSIR scheme no. 01(2095)/07/EMR-II] for the financial support. The authors thank to Professor, P.K. Palanisamy, Dr. A.N. Dhinaa, Department of Physics, Anna University, Chennai 600-025, India, for laser studies.

References

  1. 1.
    Amaranatha Reddy R, Tschierske C (2006) J Mater Chem 16:907CrossRefGoogle Scholar
  2. 2.
    Niori T, Sekine T, Watanabe J, Furukawa T, Takezoe H (1996) J Mater Chem 6:1231CrossRefGoogle Scholar
  3. 3.
    Balamurugan S, Kannan P, Chuang MT, Wu SL (2010) Ind Eng Chem Res 49:7921CrossRefGoogle Scholar
  4. 4.
    Weissflog W, Nadasi H, Dunemann U, Pelzl G, Diele S, Eremin A, Kresse H (2001) J Mater Chem 11:2748CrossRefGoogle Scholar
  5. 5.
    Balamurugan R, Kannan P (2010) J Mater Sci 45:1321. doi: https://doi.org/10.1007/s10853-009-4085-4 CrossRefGoogle Scholar
  6. 6.
    Ravikrishnan A, Sudhakara P, Kannan P (2010) J Mater Sci 45:435. doi: https://doi.org/10.1007/s10853-009-3959-9 CrossRefGoogle Scholar
  7. 7.
    He X-Z, Zhang B-Y, Meng F-B, Tian M, Mu Q (2010) J Mater Sci 45:201. doi: https://doi.org/10.1007/s10853-009-3919-4 CrossRefGoogle Scholar
  8. 8.
    Song Genping, Han Jie, Jie Bo, Guo Rong (2009) J Mater Sci 44:715. doi: https://doi.org/10.1007/s10853-008-3175-z CrossRefGoogle Scholar
  9. 9.
    Shubashree S, Sadashiva BK, Dhara S (2002) Liq Cryst 29:789CrossRefGoogle Scholar
  10. 10.
    Balamurugan S, Kannan P (2009) J Mol Struct 934:44CrossRefGoogle Scholar
  11. 11.
    Choi EJ, Ahn JC, Chien LC, Lee CK, Zin WC, Kim DC, Shin ST (2004) Macromolecules 37:71CrossRefGoogle Scholar
  12. 12.
    Xiaofang C, Kishore KT, Li CY, Yaowen B, Wan X, Fan X, Zhou QF, Rong L, Hsiao BS (2007) Macromolecules 40:840CrossRefGoogle Scholar
  13. 13.
    Zhou QF, Li A-M, Feng X-D (1987) Macromolecules 20:233CrossRefGoogle Scholar
  14. 14.
    Chen X-f, Tenneti KK, Li CY, Bai Y, Zhou R, Wan X, Fan X, Zhou Q-F (2006) Macromolecules 39:517CrossRefGoogle Scholar
  15. 15.
    Braun D, Reubold M, Schneider L, Wegmann M, Wendorff JH (1994) Liq Cryst 16:429CrossRefGoogle Scholar
  16. 16.
    Yamaguchi A, Nishiyama I, Yamamoto J, Yokoyama H, Yoshizawa AJ (2005) J Mater Chem 15:280CrossRefGoogle Scholar
  17. 17.
    Yamaguchi A, Yoshizawa A, Nishiyama I, Yamamoto J, Yokoyama H (2005) Mol Cryst Liq Cryst 439:585CrossRefGoogle Scholar
  18. 18.
    Liu J, Zhang Q, Zhang J, Hou W (2005) J Mater Sci 40:4517. doi: https://doi.org/10.1007/s10853-005-1102-0 CrossRefGoogle Scholar
  19. 19.
    Bubnov A, Hamplova V, Kaspar M, Vajda A, Stojanovic M, Obadovic DZ, Eber N, Fodor-Csorba K (2007) J Therm Anal Calorim 90:431CrossRefGoogle Scholar
  20. 20.
    Hartley GS (1937) Nature 140:281CrossRefGoogle Scholar
  21. 21.
    Shi J, Huang M, Chen Z, Gong Q, Cao S (2004) J Mater Sci 39:3783. doi: https://doi.org/10.1023/B:JMSC.0000030738.49806.8d CrossRefGoogle Scholar
  22. 22.
    Wu S, Yao S, She W, Luo D, Wang H (2003) J Mater Sci 38:401. doi: https://doi.org/10.1023/A:1021878710507 CrossRefGoogle Scholar
  23. 23.
    Saravanan C, Kannan P (2009) Polym Degrad Stab 94:1001CrossRefGoogle Scholar
  24. 24.
    Yao J, You Y, Liu H, Dong L, Xiong C (2010) J Mater Sci 46:3343–3348. doi: https://doi.org/10.1007/s10853-010-5222-9 CrossRefGoogle Scholar
  25. 25.
    Liu JH, Yang PC (2006) Polymer 47:4925CrossRefGoogle Scholar
  26. 26.
    Rahman L, Kumar S, Tschierskec C, Israelc G, Sterc D, Hegded G (2009) Liq Cryst 36:397CrossRefGoogle Scholar
  27. 27.
    Natansohn A, Rochon P (2002) Chem Rev 102:4139CrossRefGoogle Scholar
  28. 28.
    Manickasundaram S, Kannan P, Hassan QMA, Palanisamy PK (2008) J Mater Sci Mater Electron 19:1045CrossRefGoogle Scholar
  29. 29.
    Saravanan C, Senthil S, Kannan P (2008) J Polym Sci A 46:7843CrossRefGoogle Scholar
  30. 30.
    Rochon P, Batalla E, Natansohn A (1995) Appl Phys Lett 66:136CrossRefGoogle Scholar
  31. 31.
    Yuquan S, Ling Q, Zao L, Xinxin Z, Yuxia Z, Jianfeng Z, Delaire JA, Nakatani K, Atassi Y (1999) J Mater Sci 34:1513. doi: https://doi.org/10.1023/A:1004556011600 CrossRefGoogle Scholar
  32. 32.
    Qiu L, Shen Y, Hao J, Zhai J, Zu F, Zhao TZ, Clays K, Persoons A (2004) J Mater Sci 39:2335. doi: https://doi.org/10.1023/B:JMSC.0000019994.38191.fe CrossRefGoogle Scholar
  33. 33.
    Delphia Shalini Rosalyn P, Kannan P, Vinitha G, Ramalingam A (2009) J Mater Sci Mater Electron 20:835CrossRefGoogle Scholar
  34. 34.
    Perin DD, Aramarego WLF (1998) Purification of laboratory chemicals. Pergamon Press, New YorkGoogle Scholar
  35. 35.
    Cao HZ, Zhang W, Zhu J, Chen XR, Cheng ZP, Wu JH, Zhu XL (2008) Express Polym Lett 2:589CrossRefGoogle Scholar
  36. 36.
    Sano M, Kunitake’tt T (1992) Langmuir 8:320CrossRefGoogle Scholar
  37. 37.
    Suarez M, Lehn JM, Zimmerman SC, Skoulious A, Heinrich B (1998) J Am Chem Soc 120:9526CrossRefGoogle Scholar
  38. 38.
    Joaqun B, Loris G, Fabio P, Elisabetta S, Rosa MT, Luigi A (2008) Eur J 14:11209CrossRefGoogle Scholar
  39. 39.
    Moritsugu M, Kim S-N, Kubo S, Ogata T, Nonaka T, Sato O, Kurihara S (2011) React Funct Polym 71:30CrossRefGoogle Scholar
  40. 40.
    Sheik-Bahae M, Said AA, Wei T, Hagan DJ, Van Stryland EW (1990) IEEE J Quantum Electron 26:760CrossRefGoogle Scholar
  41. 41.
    Prasad PN, Williams D (1991) Introduction to nonlinear optics effects in molecules and polymers. Wiley, New YorkGoogle Scholar
  42. 42.
    Wang YH, Gu B, Xu GD, Zhu YY (2004) Appl Phys Lett 84:1686CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistryAnna UniversityChennaiIndia

Personalised recommendations