Journal of Materials Science

, Volume 46, Issue 22, pp 7098–7105 | Cite as

Nano-domain structure of Li4Mn5O12 spinel

  • Sv. Ivanova
  • E. ZhechevaEmail author
  • D. Nihtianova
  • R. Stoyanova
Size Dependent Effects


XRD-pure Li4Mn5O12 spinels are obtained below 600 °C from oxalate and acetate precursors. The morphology consists of nanometric particles (about 25 nm) with a narrow particle size distribution. HRTEM and electron paramagnetic resonance (EPR) spectroscopy of Mn4+ are employed for local structure analysis. The HRTEM images recorded on nano-domains in Li4Mn5O12 reveal its complex structure. HRTEM shows one-dimensional structure images, which are compatible with the (111) plane of the cubic spinel structure and the (001) plane of monoclinic Li2MnO3. For Li4Mn5O12 compositions annealed between 400 and 800 °C, EPR spectroscopy shows the appearance of two types of Mn4+ ions having different metal environments: (i) Mn4+ ions surrounded by Li+ and Mn4+ and (ii) Mn4+ ions in Mn4+-rich environment. The composition of the Li+, Mn4+-shell around Mn4+ mimics the local environment of Mn4+ in monoclinic Li2MnO3, while the Mn4+-rich environment is related with that of the spinel phase. The structure of XRD-pure Li4Mn5O12 comprises nano-domains with a Li2MnO3-like and a Li4/3−xMn5/3+xO4 composition rather than a single spinel phase with Li in tetrahedral and Li1/3Mn5/3 in octahedral spinel sites. The annealing of Li4Mn5O12 at temperature higher than 600 °C leads to its decomposition into monoclinic Li2MnO3 and spinel Li4/3−xMn5/3+xO4.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Spinel Phase Electron Paramagnetic Resonance Spectroscopy 



Authors are grateful to the financial support from the National Science Fund of Bulgaria (Ch1701/2007). Partial financial support by the National Centre for New Materials UNION (Contract No DCVP-02/2/2009) is also acknowledged.


  1. 1.
    Whittingham MS (2004) Chem Rev 104:4271CrossRefGoogle Scholar
  2. 2.
    Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691CrossRefGoogle Scholar
  3. 3.
    Johnson CS, Li N, Vaughey JT, Hackney SA, Thackeray MM (2005) Electrochem Comm 7:528CrossRefGoogle Scholar
  4. 4.
    Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) J Mater Chem 15:2257CrossRefGoogle Scholar
  5. 5.
    Cabana J, Johnson CS, Yang XQ, Chung KY, Yoon WS, Kang SH, Thackeray MM, Grey CP (2010) J Mater Res 25:1601CrossRefGoogle Scholar
  6. 6.
    Strobel P, Lambert-Anderson B (1988) J Solid State Chem 75:90CrossRefGoogle Scholar
  7. 7.
    Riou A, Lecerf A, Gerault Y, Cudennec Y (1992) Mater Res Bull 27:269CrossRefGoogle Scholar
  8. 8.
    Lei CH, Wen JG, Sardela M, Bareño J, Petrov I, Kang S-H, Abraham DP (2009) J Mater Sci 44:5579. doi: CrossRefGoogle Scholar
  9. 9.
    Thackeray MM, De Kock A, David WIF (1993) Mater Res Bull 28:1041CrossRefGoogle Scholar
  10. 10.
    Takada T, Hayakawa H, Akiba E (1995) J Solid State Chem 115:420CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Wang H, Wang B, Yan H, Ahnyiaz A, Yoshimura M (2002) Mater Res Bull 37:1411CrossRefGoogle Scholar
  12. 12.
    Tian Y, Chen D, Jiao X, Duan Y (2007) Chem Commun 2072Google Scholar
  13. 13.
    Zhao Y, Xu X, Lai Q, Hao Y, Wang L, Lin Z (2010) J Solid State Electrochem 14:1509CrossRefGoogle Scholar
  14. 14.
    Jiang YP, Xie J, Cao GS, Zhao XB (2010) Electrochim Acta 56:412CrossRefGoogle Scholar
  15. 15.
    Mukai K, Sugiyama J, Ikedo Y, Nozaki H, Kamazawa K, Andreica D, Amato A, Manson M, Brewer JH, Ansaldo EJ, Chow KH (2010) J Phys Chem C 114:11320CrossRefGoogle Scholar
  16. 16.
    Boulineau A, Croguennec L, Delmas C, Weill F (2009) Chem Mater 21:4216CrossRefGoogle Scholar
  17. 17.
    Boulineau A, Croguennec L, Delmas C, Weill F (2010) Solid State Ion 180:1652CrossRefGoogle Scholar
  18. 18.
    Zhecheva E, Stoyanova R, Alcántara R, Lavela P, Tirado JL (2002) Pure Appl Chem 74:1885CrossRefGoogle Scholar
  19. 19.
    Stoyanova R, Zhecheva E, Alcántara R, Lavela P, Tirado JL (1997) Solid State Commun 102:457CrossRefGoogle Scholar
  20. 20.
    Zhecheva E, Stoyanova R (2005) Solid State Commun 135:405CrossRefGoogle Scholar
  21. 21.
    Capsoni D, Bini M, Chiodelli G, Massarotti V, Mozatti MC, Comin A (2001) Phys Chem Chem Phys 3:2162CrossRefGoogle Scholar
  22. 22.
    Capsoni D, Bini M, Chiodelli G, Massarotti V, Mozatti MC, Azzoni C (2003) Solid State Commun 125:179CrossRefGoogle Scholar
  23. 23.
    Zhecheva E, Gorova M, Stoyanova R (1999) J Mater Chem 9:1559CrossRefGoogle Scholar
  24. 24.
    Stoyanova R, Zhecheva E, Gorova M (2000) J Mater Chem 10:1377CrossRefGoogle Scholar
  25. 25.
    Zhecheva E, Stoyanova R, Gorova M, Lavela P, Tirado JL (2001) Solid State Ion 140:19CrossRefGoogle Scholar
  26. 26.
    Stoyanova R, Gorova M, Zhecheva E (2000) J Phys Chem Solids 61:615CrossRefGoogle Scholar
  27. 27.
    Stoyanova R, Gorova M, Zhecheva E (2000) J Phys Chem Solids 61:609CrossRefGoogle Scholar
  28. 28.
    Stoyanova R, Zhecheva E, Vassilev S (2006) J Solid State Chem 179:378CrossRefGoogle Scholar
  29. 29.
    Stoyanova R, Zhecheva E, Alcántara R, Tirado JL (2006) J Mater Chem 16:359CrossRefGoogle Scholar
  30. 30.
    Ye XR, Jia DZ, Yu JQ, Xin XQ, Xue Z (1999) Adv Mater 11:941CrossRefGoogle Scholar
  31. 31.
    Huang Y, Li J, Jia D (2005) J Colloid Interface Sci 286:263CrossRefGoogle Scholar
  32. 32.
    Tang X-C, Jiang C-K, Pan C-Y, Huang B-Y, He Y-H (2006) J Solid State Chem 179:1100CrossRefGoogle Scholar
  33. 33.
    Alcántara R, Lavela P, Tirado JL, Stoyanova R, Kuzmanova E, Zhecheva E (1997) Chem Mater 9:2145CrossRefGoogle Scholar
  34. 34.
    Rodríguez-Carvajal J (1990) In: Satellite meeting on powder diffraction of the XV congress of the IUCr, p 127Google Scholar
  35. 35.
    Williams DB, Carter CB (1996) Transmission electron microscopy, a textbook for materials science, basics I, diffraction II, imaging III. Plenum Press, New York, LondonGoogle Scholar
  36. 36.
    Massarotti V, Capsoni D, Bini M, Azzoni CB (1997) J Solid State Chem 128:80CrossRefGoogle Scholar
  37. 37.
    Branford W, Green MA, Neumann DA (2002) Chem Mater 14:1649CrossRefGoogle Scholar
  38. 38.
    Greedan JE, Raju NP, Wills AS, Morin C, Shaw SM, Reimers JN (1998) Chem Mater 10:3058CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sv. Ivanova
    • 1
  • E. Zhecheva
    • 1
    Email author
  • D. Nihtianova
    • 1
    • 2
  • R. Stoyanova
    • 1
  1. 1.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Mineralogy and CrystallographyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations