Journal of Materials Science

, Volume 46, Issue 13, pp 4701–4709 | Cite as

Synthesis of polyetherimide/silica hybrid membranes by the sol–gel process: influence of the reaction conditions on the membrane properties

  • Analia I. RomeroEmail author
  • Mónica L. Parentis
  • Alberto C. Habert
  • Elio E. Gonzo


Hybrid polyetherimide (PEI)–silica membranes were synthesized. The aim was to obtain improved materials for gas separation media. The inorganic material was prepared via the sol–gel method through the hydrolysis of tetraethoxysilane (TEOS). The influence of the reaction conditions on the final membrane morphology and properties were studied. Scanning electron microscopy (SEM), energy-dispersive X-ray analysis (SEM–EDX), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the PEI and PEI–silica composite membranes. The evolution of TEOS hydrolysis and the condensation processes were verified by FTIR studies. The silica–polymer interaction was also analyzed. The SEM micrographs showed how the membranes distinct morphologies depended upon synthesis parameters and preparation techniques (presence of coupling agent, TEOS polymerization in situ or not, silica content and membranes redissolution). The permeation rates of CO2, CH4, O2, N2, and H2 through the pure polymer and hybrid membranes were measured and showed an increase of gas permeability for hybrid membranes but, the CO2/CH4 and O2/N2 selectivities decreased compared to PEI membranes.


Fumed Silica Coupling Agent Composite Membrane Silica Content Silane Coupling Agent 



The authors would like to thank Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil) for the support of bilateral project BR/PA04-UXIV/008 as well as Agencia Nacional de Promoción Científica y Tecnológica (Grant PICTO 36716) and Consejo de Investigación-Universidad Nacional de Salta (Grant 1895/3). We also thank Ph.D. Nelio A. Ochoa from Laboratorio de Ciencias de Superficies y Medios Porosos, Departamento de Química, Universidad Nacional de San Luis, for his valuable help.


  1. 1.
    Duval JM, Kemperman AJB, Folkers B, Mulder MHV, Desgrandchamps G, Smolders CA (1994) J Appl Polym Sci 54(4):409CrossRefGoogle Scholar
  2. 2.
    Pechar TW, Tsapatsis M, Marand E, Davis R (2002) Desalination 146(1–3):3CrossRefGoogle Scholar
  3. 3.
    Duval JM, Folkers B, Mulder MHV, Desgrandchamps G, Smolders CA (1993) J Membr Sci 80(1):189CrossRefGoogle Scholar
  4. 4.
    Vu DQ, Koros WJ, Miller SJ (2003) J Membr Sci 211(2):311CrossRefGoogle Scholar
  5. 5.
    Husain S, Koros WJ (2007) J Membr Sci 288(1–2):195CrossRefGoogle Scholar
  6. 6.
    Mahajan R, Koros WJ (2002) Polym Eng Sci 42(7):1432CrossRefGoogle Scholar
  7. 7.
    He Z, Pinnau I, Morisato A (2002) Desalination 146(1–3):11CrossRefGoogle Scholar
  8. 8.
    Johnson JR, Koros WJ (2009) J Taiwan Inst Chem Eng 40(3):268CrossRefGoogle Scholar
  9. 9.
    Vu DQ, Koros WJ, Miller SJ (2003) J Membr Sci 211(2):335CrossRefGoogle Scholar
  10. 10.
    Ahn J, Chung W-J, Pinnau I, Guiver MD (2008) J Membr Sci 314(1–2):123CrossRefGoogle Scholar
  11. 11.
    Chung T-S, Jiang LY, Li Y, Kulprathipanja S (2007) Prog Polym Sci 32(4):483CrossRefGoogle Scholar
  12. 12.
    Cornelius CJ, Marand E (2002) Polymer 43(8):2385CrossRefGoogle Scholar
  13. 13.
    Cornelius C, Hibshman C, Marand E (2001) Sep Purif Technol 25(1–3):181CrossRefGoogle Scholar
  14. 14.
    Sadeghi M, Semsarzadeh MA, Moadel H (2009) J Membr Sci 331(1–2):21CrossRefGoogle Scholar
  15. 15.
    Nunes SP, Peinemann KV, Ohlrogge K, Alpers A, Keller M, Pires ATN (1999) J Membr Sci 157(2):219CrossRefGoogle Scholar
  16. 16.
    Zhong S-H, Li C-F, Xiao X-F (2002) J Membr Sci 199(1–2):53CrossRefGoogle Scholar
  17. 17.
    Chen B-K, Su C-T, Tseng M-C, Tsay S-Y (2006) Polym Bull 57(5):671CrossRefGoogle Scholar
  18. 18.
    Musto P, Abbate M, Lavorgna M, Ragosta G, Scarinzi G (2006) Polymer 47(17):6172CrossRefGoogle Scholar
  19. 19.
    Ahmad A, Mark JE (2001) Chem Mater 13:3320CrossRefGoogle Scholar
  20. 20.
    Kim H, Kim H-G, Kim S, Kim SS (2009) J Membr Sci 344(1–2):211CrossRefGoogle Scholar
  21. 21.
    Ragosta G, Musto P (2009) eXPRESS Polymer Letters 3(7):413CrossRefGoogle Scholar
  22. 22.
    Takahashi S, Paul DR (2006) Polymer 47(21):7519CrossRefGoogle Scholar
  23. 23.
    Takahashi S, Paul DR (2006) Polymer 47(21):7535CrossRefGoogle Scholar
  24. 24.
    Mulder M (1991) Basic principles of membrane technology. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  25. 25.
    Chen Y, Iroh JO (1999) Chem Mater 11:1218CrossRefGoogle Scholar
  26. 26.
    Lin W-H, Chung T-S (2001) J Membr Sci 186(2):183CrossRefGoogle Scholar
  27. 27.
    Anson M, Marchese J, Garis E, Ochoa N, Pagliero C (2004) J Membr Sci 243(1–2):19CrossRefGoogle Scholar
  28. 28.
    Al Arbash A, Ahmad Z, Al-Sagheer F, Ali AAM (2006) J Nanomater doi:
  29. 29.
    Joly C, Smaihi M, Porcar L, Noble RD (1999) Chem Mater 11:2331CrossRefGoogle Scholar
  30. 30.
    Al-Kandary SH, Ali AAM, Ahmad Z (2006) J Mater Sci 41:2907. doi: CrossRefGoogle Scholar
  31. 31.
    Yuan J ZS, Gu G, Wu L (2005) J Membr Sci 40:3927Google Scholar
  32. 32.
    Amancio-Filho ST, Roeder J, Nunes SP, dos Santos JF, Beckmann F (2008) Polym Degrad Stab 93(8):1529CrossRefGoogle Scholar
  33. 33.
    Lenza RFS, Vasconcelos WL (2001) Mater Res 4(3):175CrossRefGoogle Scholar
  34. 34.
    Patel S, Bandyopadhyay A, Vijayabaskar V, Bhowmick AK (2006) J Mater Sci 41:927. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Analia I. Romero
    • 1
    Email author
  • Mónica L. Parentis
    • 1
  • Alberto C. Habert
    • 2
  • Elio E. Gonzo
    • 1
  1. 1.Facultad de IngenieríaInstituto de Investigaciones para la Industria Química (INIQUI—CONICET), Universidad Nacional de SaltaSalta CapitalArgentina
  2. 2.Programa de Engenharia QuímicaCOPPE/Universidade Federal de Rio de Janeiro, Cidade UniversitáriaRio de JaneiroBrazil

Personalised recommendations