Journal of Materials Science

, Volume 46, Issue 13, pp 4630–4637 | Cite as

Electrocatalytic evolution of hydrogen on the NiCu/Al2O3/nano-carbon network composite electrode

  • Xuhui Zhao
  • Masayoshi FujiEmail author
  • Takashi Shirai
  • Hideo Watanabe
  • Minoru Takahashi
  • Yu Zuo


We present a way to fabricate the NiCu/Al2O3/nano-carbon network (NCN) composite electrode by coelectrodepositing NiCu particles, using a novel conductive alumina/NCN composite material as the support. The morphology, crystalline phases, and compositions are characterized by field-emission scanning electron microscope, energy dispersive X-ray spectroscope, X-ray diffraction, and Raman spectroscopy. The electrocatalytic behaviors of this NiCu/Al2O3/NCN composite material for hydrogen evolution reaction (HER) in alkaline solution are studied by cathodic polarization curves, electrochemical impedance spectroscopy (EIS), and chronoamperometry. The results show that nickel–copper particles are briefly deposited and uniformly distributed over the carbon layer of the conductive ceramics between alumina grains, in the form of a NiCu solid solution with face-centered cubic structure. The NiCu/Al2O3/NCN composite displays a high electrochemical stability in alkaline solution and relatively high electrocatalytic activity for HER due to its relatively high real surface area and high intrinsic electrocatalytic effect of NiCu alloy particles. The associated kinetic parameters of HER are systematically investigated using EIS.


Electrochemical Impedance Spectroscopy Electrocatalytic Activity Composite Electrode Hydrogen Evolution Reaction High Electrocatalytic Activity 


  1. 1.
    Vezirolu TN, Barbir F (1992) Int J Hydrogen Energy 17:391CrossRefGoogle Scholar
  2. 2.
    Abanades S, Legal A, Cordier A, Peraudeau G, Flamant G, Julbe A (2010) J Mater Sci 45:4163. doi: CrossRefGoogle Scholar
  3. 3.
    Hu MZ, Lai P, Bhuiyan MS, Tsouris C, Gu B, Paranthaman MP, Gabitto J, Harrison L (2009) J Mater Sci 44:2820. doi: CrossRefGoogle Scholar
  4. 4.
    El-Deab MS, Saleh MM (2003) Int J Hydrogen Energy 28:1199CrossRefGoogle Scholar
  5. 5.
    Solmaz R, Doner A, Kardas G (2008) Electrochem Commun 10:1909CrossRefGoogle Scholar
  6. 6.
    Xu W, Liu C, Xing W, Lu T (2007) Electrochem Commun 9:180CrossRefGoogle Scholar
  7. 7.
    Marshall AT, Sunde S, Tsypkin M, Tunold R (2007) Int J Hydrogen Energy 32:2320CrossRefGoogle Scholar
  8. 8.
    Stojic DL, Grozdic TD, Kaninski MPM, Stanic V (2007) Int J Hydrogen Energy 32:2314CrossRefGoogle Scholar
  9. 9.
    Han Q, Liu K, Chen J, Wei X (2009) Int J Hydrogen Energy 34:71CrossRefGoogle Scholar
  10. 10.
    Xu Y (2009) Int J Hydrogen Energy 34:77CrossRefGoogle Scholar
  11. 11.
    Crnkovic FC, Machado SAS, Avaca LA (2004) Int J Hydrogen Energy 29:249CrossRefGoogle Scholar
  12. 12.
    Burchardt T (2000) Int J Hydrogen Energy 25:627CrossRefGoogle Scholar
  13. 13.
    Lee JK, Yi Y, Lee HJ, Uhm S, Lee J (2009) Catal Today 146:188CrossRefGoogle Scholar
  14. 14.
    Han Q, Liu K, Chen J, Wei X (2003) Int J Hydrogen Energy 28:1207CrossRefGoogle Scholar
  15. 15.
    Shibli SMA, Dilimon VS (2007) Int J Hydrogen Energy 32:1694CrossRefGoogle Scholar
  16. 16.
    Kubisztal J, Budniok A, Lasia A (2007) Int J Hydrogen Energy 32:1211CrossRefGoogle Scholar
  17. 17.
    Alisa NF, Sasha O (2005) J Mol Catal A Chem 242:182CrossRefGoogle Scholar
  18. 18.
    Kibria MF, Mridha MSH (1996) Int J Hydrogen Energy 21:179CrossRefGoogle Scholar
  19. 19.
    Kellenberger A, Vaszilcsin N, Brandl W, Duteanu N (2007) Int J Hydrogen Energy 32:3258CrossRefGoogle Scholar
  20. 20.
    Kim DR, Cho KW, Choi YI, Park CJ (2009) Int J Hydrogen Energy 34:2622CrossRefGoogle Scholar
  21. 21.
    Solmaz R, Doner A, Kardas G (2009) Int J Hydrogen Energy 34:2089CrossRefGoogle Scholar
  22. 22.
    Menchavez RL, Fuji M, Takahashi M (2008) Adv Mater 20:2345CrossRefGoogle Scholar
  23. 23.
    Menchavez RL, Fuji M, Takahashi M (2009) J Eur Ceram Soc 29:949CrossRefGoogle Scholar
  24. 24.
    Hai C, Liu J, Watanabe H, Fuji M, Wang F, Takahashi M (2009) J Am Ceram Soc 92:s38CrossRefGoogle Scholar
  25. 25.
    Liu J, Menchavez RL, Watanabe H, Fuji M, Takahashi M (2008) Electrochim Acta 53:7191CrossRefGoogle Scholar
  26. 26.
    Metikos-Hukovic M, Jukic A (2000) Electrochim Acta 45:4159CrossRefGoogle Scholar
  27. 27.
    Liu J, Watanabe H, Fuji M, Takahashi M (2009) Electrochem Commun 11:107CrossRefGoogle Scholar
  28. 28.
    Alper M, Kockar H, Safak M, Celalettin Baykul M (2008) J Alloy Compd 453:15CrossRefGoogle Scholar
  29. 29.
    Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani MG (2009) Int J Hydrogen Energy 34:859CrossRefGoogle Scholar
  30. 30.
    Shervedani RK, Madram AR (2007) Electrochim Acta 53:426CrossRefGoogle Scholar
  31. 31.
    Dabo P, Menard H, Brossard L (1997) Int J Hydrogen Energy 22:763CrossRefGoogle Scholar
  32. 32.
    Ma J, Jiang X (1995) Chin J Appl Chem 12(6):25Google Scholar
  33. 33.
    Elumalai P, Vasan HN, Munichandraiah N, Shivashankar SA (2002) J Appl Electrochem 32:1005CrossRefGoogle Scholar
  34. 34.
    Tanaka S, Hirose N, Tanaki T, Ogata YH (2001) Int J Hydrogen Energy 26:47CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xuhui Zhao
    • 1
    • 2
  • Masayoshi Fuji
    • 1
    Email author
  • Takashi Shirai
    • 1
  • Hideo Watanabe
    • 1
  • Minoru Takahashi
    • 1
  • Yu Zuo
    • 2
  1. 1.Ceramics Research LaboratoryNagoya Institute of TechnologyTajimiJapan
  2. 2.School of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations