Journal of Materials Science

, Volume 46, Issue 13, pp 4622–4629 | Cite as

On the thermal stability of the copper–titanium–zirconium phosphate solid-solution series: CuTi2−xZrx(PO4)3 (0 ≤ x ≤ 2) under air

  • T. E. WarnerEmail author
  • E. M. Skou


The solid copper(I) electrolytes: CuTi2(PO4)3; CuTiZr(PO4)3; and CuZr2(PO4)3; were prepared as powders by high temperature synthesis and analysed by powder XRD. These materials were then annealed in air at 400 °C for 72 h. The results of powder XRD showed that the degree of oxidation under these conditions varies progressively and enormously across this series, with the passivity dependent upon the Ti/Zr ratio; CuTi2(PO4)3 being the least reactive under these conditions. The results of the thermogravimetric analyses in artificial air (\( P_{{{\text{O}}_{2} }} \) = 0.2 bar) corroborate with the above, and reveal in all cases that Teqm = 500 ± 25 °C for the reversible reaction: 4Cu (Ti, Zr)2(PO4)3 + O2 ⇆ 4Cu0.5 (Ti, Zr)2(PO4)3 + 2CuO. Green Cu0.5TiZr (PO4)3 has been prepared as a new compound and was shown to belong to a rhombohedral system with hexagonal cell constants: a = 8.599(1) Å; c = 22.355(3) Å; Z = 6.


Cu2O Product Material Powder Pattern Zirconium Phosphate TiZr 



The authors are grateful to Professor Andrew Bond for assistance with indexing the powder X-ray diffraction patterns for CuTiZr(PO4)3 and Cu0.5TiZr(PO4)3.


  1. 1.
    Hong HY-P (1976) Mater Res Bull 11:173CrossRefGoogle Scholar
  2. 2.
    Yao PC, Fray DJ (1983) Solid State Ionics 8:35CrossRefGoogle Scholar
  3. 3.
    Davidson AJ, Fray DJ (2000) Solid State Ionics 136–137:613CrossRefGoogle Scholar
  4. 4.
    Oudet F, Vejux A, Kompany T, Bordes E, Courtine P (1989) Mater Res Bull 24:561CrossRefGoogle Scholar
  5. 5.
    Kousuke Y, Yoshihiro A (2000) Mater Res Bull 35:211CrossRefGoogle Scholar
  6. 6.
    Mbandza A, Bordes E, Courtine P (1985) Mater Res Bull 20:251CrossRefGoogle Scholar
  7. 7.
    Berry FJ, Oates G, Smart LE, Vithal M, Cook R, Ricketts HG, Williams R, Marco JF (1992) Polyhedron 11:2543CrossRefGoogle Scholar
  8. 8.
    Warner TE, Milius M, Maier J (1992) Ber Bunsenges Phys Chem 96:1607CrossRefGoogle Scholar
  9. 9.
    Jazouli AE, Soubeyroux JL, Dance JM, Flem GL (1986) J Solid State Chem 65:351CrossRefGoogle Scholar
  10. 10.
    Jazouli AE, Alami M, Brochu R, Dance JM, Flem GL, Hagenmuller P (1987) J Solid State Chem 71:444CrossRefGoogle Scholar
  11. 11.
    Polles GL, Jazouli AE, Olazcuaga R, Dance JM, Flem GL, Hagenmuller P (1987) Mater Res Bull 22:1171CrossRefGoogle Scholar
  12. 12.
    Bussereau I, Olazcuaga R, Flem GL, Hagenmuller P (1989) Eur J Solid State Inorg Chem 26:383Google Scholar
  13. 13.
    Christensen E, Barner JH, Engell J, Bjerrum HJ (1990) J Mater Sci 25:4060. doi: CrossRefGoogle Scholar
  14. 14.
    Bussereau I, Belkhiria MS, Gravereau P, Boireau A, Soubeyroux JL, Olazcuagal R, Flem GL (1992) Acta Cryst C 48:1741CrossRefGoogle Scholar
  15. 15.
    Christensen RH-W, Warner TE (2006) J Mater Sci 41:1197. doi: CrossRefGoogle Scholar
  16. 16.
    Warner TE, Edwards PP, Fray DJ (1991) Mater Sci Eng B8:219CrossRefGoogle Scholar
  17. 17.
    Boultif A, Louer D (2004) J Appl Cryst 37:724CrossRefGoogle Scholar
  18. 18.
    McCarron EM, Calabrese JC, Subramanian MA (1987) Mater Res Bull 22:1421CrossRefGoogle Scholar
  19. 19.
    Olazcuaga R, Flem GL, Boireau A, Soubeyroux JL (1994) Adv Mater Res 1:177CrossRefGoogle Scholar
  20. 20.
    Taoufik I, Haddad M, Nadiri A, Brochu R, Berger R (1999) J Phys Chem Solids 60:701CrossRefGoogle Scholar
  21. 21.
    Mbandza A, Bordes E, Courtine P, Jazouli AE, Soubeyroux JL, Flem GL, Hagenmuller P (1988) React Solid 5:315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Chemical Engineering, Biotechnology and Environmental TechnologyUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations