Advertisement

Journal of Materials Science

, Volume 46, Issue 13, pp 4606–4613 | Cite as

Controllable synthesis of hexagonal close-packed nickel nanoparticles under high nickel concentration and its catalytic properties

  • Yong Guo
  • Muhammad Usman Azmat
  • Xiaohui Liu
  • Jiawen Ren
  • Yanqin Wang
  • Guanzhong Lu
Article

Abstract

The hexagonal close-packed (hcp) Ni nanoparticles have been synthesized successfully in triethylene glycol with high ionic Ni concentration under the presence of protective agent (PVP or PEG). The protective agent (PVP or PEG) played an important role in the formation of hcp Ni. The crystal structure of nickel can be tuned by changing the concentration of Ni ions, reaction temperature, and amount of protectors. The X-ray diffraction and magnetic studies revealed the formation of pure hcp Ni. The VSM study showed that the magnetic properties of hcp Ni is quite different from that of face-centered cubic (fcc) Ni. The hcp Ni nanoparticle had a low saturation magnetization, while the coercivity value of hcp Ni was nearly the same as that of fcc Ni. A stable hcp Ni supported on γ-Al2O3 catalyst was also prepared successfully for the first time and its catalytic activity was investigated in the aqueous-phase reforming of glycerol. The achieved conversion of glycerol and selectivity to hydrogen was high up to 52 and 64%, while the selectivity to methane was only 5%, indicating the preventing of methanation on hcp Ni.

Keywords

Primary Particle Size Triethylene Glycol Polyol Process Acetate Tetrahydrate Stainless Steel Tubular Reactor 

Notes

Acknowledgements

This project was supported financially by the 973 Program of China (2010CB732300), the National Natural Science Foundation of China (No. 20973058), the Commission of Science and Technology of Shanghai Municipality (10XD1401400), and the “Excellent scholarship” of East China University of Science and Technology, China.

References

  1. 1.
    Huber GW, Shabaker JW, Dumesic JA (2003) Science 300:2075CrossRefGoogle Scholar
  2. 2.
    Zhu LJ, Guo PJ, Chu XW, Yan SR, Qiao MH, Fan KN, Zhang XX, Zong BN (2008) Green Chem 10:1323CrossRefGoogle Scholar
  3. 3.
    Wu ZJ, Zhang MH, Zhao ZF, Li W, Tao KY (2008) J Catal 256:323CrossRefGoogle Scholar
  4. 4.
    Li HX, Zhao QF, Wan Y, Dai WL, Qiao MH (2006) J Catal 244:251CrossRefGoogle Scholar
  5. 5.
    Jung SW, Park WI, Yi GC, Kim M (2003) Adv Mater 15:1358CrossRefGoogle Scholar
  6. 6.
    Wang SF, Xie F, Hu RF (2007) Sensor Actuator B Chem 123:495CrossRefGoogle Scholar
  7. 7.
    Zhang RY, Wang XM, Wu CH, Song M, Li JY, Lv G, Zhou J, Chen C, Dai YY, Gao F, Fu DG, Li XO, Guan ZQ, Chen BA (2006) Nanotechnology 17:3622CrossRefGoogle Scholar
  8. 8.
    Hou Y, Gao S (2003) J Mater Chem 13:1510CrossRefGoogle Scholar
  9. 9.
    Wu SH, Chen DH (2003) J Colloid Interface Sci 259:282CrossRefGoogle Scholar
  10. 10.
    Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh HJ, Park JH, Bae CJ, Park JG, Hyeon T (2005) Adv Mater 17:429CrossRefGoogle Scholar
  11. 11.
    Cordente N, Respaud M, Senocq F, Casanove MJ, Amiens C, Chaudret B (2001) Nano Lett 1:565CrossRefGoogle Scholar
  12. 12.
    Zharkov SM, Zhigalov VS, Frolov GI (1996) Phys Met Metallogr 81:328Google Scholar
  13. 13.
    Tuaillon J, Dupuis V, Melinin P, Prevel B, Treilleux M, Perez A, Pellarin M, Vialle JL, Royer M (1997) Philos Mag A 76:493CrossRefGoogle Scholar
  14. 14.
    Hinotsu T, Jeyadevan B, Chinnasamy CN, Shinoda K, Tohji K (2004) J Appl Phys 5:7477CrossRefGoogle Scholar
  15. 15.
    Chinnasamy CN, Jeyadevan B, Shinoda K, Tohji K, Narayanasamy A, Sato K, Hisano S (2005) J Appl Phys 97:10J309CrossRefGoogle Scholar
  16. 16.
    Mi YZ, Yuan DS, Liu YL, Zhang JX, Xiao Y (2005) Mater Chem Phys 89:359CrossRefGoogle Scholar
  17. 17.
    Tzitzios V, Basina G, Gjoka M, Alexandrakis V, Georgakilas V, Niarchos D, Boukos N, Petridis D (2006) Nanotechnology 17:3750CrossRefGoogle Scholar
  18. 18.
    Jeon YT, Moon JY, Lee GH, Park J, Chang Y (2006) J Phys Chem B 110:1187CrossRefGoogle Scholar
  19. 19.
    Han M, Liu Q, He JH, Song Y, Xu Z, Zhu JM (2007) Adv Mater 19:1096CrossRefGoogle Scholar
  20. 20.
    Mireille RP, Murielle G, Serge V, Cédric L, Claude E, Mohamedally K (2007) Chem Mater 19:865CrossRefGoogle Scholar
  21. 21.
    Gong J, Wang LL, Liu Y, Yang JH, Zong ZG (2008) J Alloy Compd 457:6CrossRefGoogle Scholar
  22. 22.
    Yang JH, Feng B, Liu Y, Zhang YJ, Yang LL, Wang YX, Wei MB, Lang JH, Wang DD (2009) J Alloy Compd 467:L21CrossRefGoogle Scholar
  23. 23.
    Luo XH, Chen YZ, Yue GH, Peng DL, Luo XT (2009) J Alloy Compd 476:864CrossRefGoogle Scholar
  24. 24.
    Mourdikoudis S, Simeonidis D, Vilalta-Clemente A, Tuna F, Tsiaoussis I, Angelakeris M, Dendrinou-Samara C, Kalogirou O (2009) J Magn Magn Mater 321:2723CrossRefGoogle Scholar
  25. 25.
    Toshima N, Yan H, Shiraishi Y (2008) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Gong J, Liu Y, Wang LL, Yang JH, Zong ZG (2008) Front Chem China 3:157CrossRefGoogle Scholar
  27. 27.
    Vergara J, Madurga V (2002) J Mater Res 17:2099CrossRefGoogle Scholar
  28. 28.
    Syukri BT, Ohya Y, Takahashi Y (2003) Mater Chem Phys 78:645CrossRefGoogle Scholar
  29. 29.
    He X, Kong LT, Liu BX (2005) J Appl Phys 97:106107CrossRefGoogle Scholar
  30. 30.
    Tian F, Zhu J, Wei D (2007) J Phys Chem C 111:6994CrossRefGoogle Scholar
  31. 31.
    Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:64CrossRefGoogle Scholar
  32. 32.
    Davda RR, Dumesic JA (2003) Angew Chem Int Ed 42:4068CrossRefGoogle Scholar
  33. 33.
    Davda RR, Dumesic JA (2004) Chem Commun 1:36CrossRefGoogle Scholar
  34. 34.
    Iriondo A, Barrio VL, Cambra JF, Arias PL, Güemez MB, Navarro RM, Sánchez-Sánchez MC, Fierro JLG (2008) Top Catal 49:46CrossRefGoogle Scholar
  35. 35.
    Bengaard HS, Nørskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) J Catal 209:365CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Key Lab for Advanced Materials, Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations