Advertisement

Journal of Materials Science

, Volume 46, Issue 13, pp 4582–4587 | Cite as

Uncatalyzed synthesis of polypyrrole with viologen side groups and its chemical properties

  • Isao Yamaguchi
  • Tomonori Asano
Article

Abstract

A substituted polypyrrole (PPr) with viologen side groups (polymer-1) was obtained from the reaction of N-aminopyrrole with 1-hexyl-1′-(2,4-dinitrophenyl)-4,4′-bipyridinium dihalide (salt-1). A model compound (model-1) was synthesized by the reaction of N-aminopyrrole with N-(2,4-dinitrophenyl)-4-(4-pyridyl)pyridinium chloride (salt-2). UV–vis spectra revealed that polymer-1 had an expanded π-conjugation system along the polymer chain: the polymer showed an onset position of absorption at a wavelength approximately 200 nm longer than the corresponding wavelength of model-1. Polymer-1 received an electrochemical oxidation of the pyrrole ring and reduction of the viologen group within the polymer.

Keywords

Polypyrrole Polymer Backbone Pyrrole Ring Sulfonic Acid Group Dichloromethane Solution 

References

  1. 1.
    Maksymiuk K (2006) Electroanal 18:1537CrossRefGoogle Scholar
  2. 2.
    Geetha S, Rao CRK, Vijayan M, Trivedi DC (2006) Anal Chim Acta 568:119CrossRefGoogle Scholar
  3. 3.
    Kim BC, Ko JM, Wallace GG (2008) J Power Sources 177:665CrossRefGoogle Scholar
  4. 4.
    Yamamoto H, Kanemoto K, Oshima M, Isa I (1999) Electrochem 67:855Google Scholar
  5. 5.
    Kudoh Y, Kojima T, Fukuyama M, Tsuchiya S, Yoshimura S (1996) J Power Sources 60:157CrossRefGoogle Scholar
  6. 6.
    Zang J, Li CM, Bao SJ, Cui X, Bao Q, Sun CQ (2008) Macromolecules 41:7053CrossRefGoogle Scholar
  7. 7.
    Saravanan C, Shekhar RC, Palaniappan S (2006) Macromol Chem Phys 207:342CrossRefGoogle Scholar
  8. 8.
    Wu AM, Kolla H, Manohar SK (2005) Macromolecules 38:7873CrossRefGoogle Scholar
  9. 9.
    Sahin Y, Aydin A, Udum YA, Pekmez K, Yildiz A (2004) J Appl Polym Sci 93:526CrossRefGoogle Scholar
  10. 10.
    Pringle JM, Efthimiadis J, Howlett PC, Efthimiadis J, MacFarlane DR, Chaplin AB, Hall SB, Officer DL, Wallace GG, Forsyth M (2004) Polymer 45:1447CrossRefGoogle Scholar
  11. 11.
    Ge DT, Wang JX, Wang Z, Wang SC (2002) Synth Met 132:93CrossRefGoogle Scholar
  12. 12.
    Bazzaoui M, Bazzaoui EA, Martins L, Martins JI (2002) Synth Met 128:103CrossRefGoogle Scholar
  13. 13.
    Duchet J, Legras R, Demoustier-Champagne S (1998) Synth Met 98:113CrossRefGoogle Scholar
  14. 14.
    Ishizu K, Tanaka H, Saito R, Maruyama T, Yamamoto T (1996) Polymer 37:863CrossRefGoogle Scholar
  15. 15.
    An H, Haga Y, Yuguchi T, Yosomiya R (1994) Angew Macromol Chem 218:137CrossRefGoogle Scholar
  16. 16.
    Nakata M, Shiraishi Y, Taga M, Kise H (1992) Macromol Chem Phys 193:765CrossRefGoogle Scholar
  17. 17.
    Rapi S, Bocchi V, Gardini GP (1998) Synth Met 24:217CrossRefGoogle Scholar
  18. 18.
    Machida S, Miyata S, Techagumpuch A (1989) Synth Met 31:311CrossRefGoogle Scholar
  19. 19.
    Hür E, Bereket G, Sahin Y (2006) Mater Chem Phys 100:19CrossRefGoogle Scholar
  20. 20.
    Havinga EE, Hoeve W, Meijer EW, Wynberg H (1989) Chem Mater 1:650CrossRefGoogle Scholar
  21. 21.
    Bae WJ, Kim KH, Jo WH, Park YH (2005) Macromolecules 38:1044CrossRefGoogle Scholar
  22. 22.
    Nabid MR, Entezami AA (2004) J Appl Polym Sci 94:254CrossRefGoogle Scholar
  23. 23.
    Jang KS, Lee H, Moon B (2004) Synth Met 143:289CrossRefGoogle Scholar
  24. 24.
    Stankovic S, Stankovic R, Ristic M, Pavlovic O, Vojnovic M (1997) React Funct Polym 35:145CrossRefGoogle Scholar
  25. 25.
    Geckeler KE, Arsalani N, Rivas BL (1997) Macromol Rapid Commun 18:503CrossRefGoogle Scholar
  26. 26.
    Yamaguchi I, Mizoguchi N, Sato M (2009) Macromolecules 42:4416CrossRefGoogle Scholar
  27. 27.
    Yamaguchi I, Higashi J, Sato M (2009) J Mater Sci 44:6408. doi: https://doi.org/10.1007/s10853-009-3884-y CrossRefGoogle Scholar
  28. 28.
    Yamaguchi I, Higashi H, Shigesue S, Shingai S (2007) Tetrahedron Lett 48:7778CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision A.1. Gaussian, Inc, PittsburghGoogle Scholar
  30. 30.
    Yamamoto T (1996) Chem Lett 25:703CrossRefGoogle Scholar
  31. 31.
    Ranger M, Leclerc M (1998) Can J Chem 76:1571Google Scholar
  32. 32.
    West K, Bay L, Nielsen MM, Velmurugu Y, Skaarup S (2004) J Phys Chem B 108:15001CrossRefGoogle Scholar
  33. 33.
    Lacroix JC, Maurel F, Lacaze PC (2001) J Am Chem Soc 123:1989CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Material Science, Faculty of Science and EngineeringShimane UniversityMatsueJapan

Personalised recommendations