Advertisement

Journal of Materials Science

, Volume 46, Issue 13, pp 4555–4561 | Cite as

Ag nanoclusters synthesized by successive ionic layer deposition method and their characterization

  • L. B. Gulina
  • G. Korotcenkov
  • B. K. Cho
  • S. H. Han
  • V. P. Tolstoy
Article

Abstract

The possibilities of successive ionic layer deposition technology for synthesizing the Ag nanoclusters and nanolayers were analyzed in present article. It was shown that this technology, based on successive treatments of appropriate substrates in solution of cations and anions, is acceptable for the controllable forming of the Ag nanoparticles at the surface of different substrates. Results related to characterization of the Ag nanoclusters synthesized using Ag(NH3)2NO3 or AgNO3 precursors were discussed. It was found that the concentration and the size of the Ag nanoparticles deposited on a surface of fused quartz, silica gel, and monocrystalline silicon can be controlled by varying composition and pH of the reagent solutions as well as the number of the deposition cycles. It was established that the size of Ag nanoclusters depending on a synthesis conditions may vary from 1–5 nm to 500 nm. Model explained the growth of Ag clusters during successive ionic layer deposition was discussed as well.

Keywords

Deposition Cycle Silver Cation Ascorbic Acid Solution Nanolayer Thickness Adsorbed Silver 

Notes

Acknowledgements

This work was supported by Russian Foundation for Basic Research (RFBR) (Grant # 09-03-00892a), by the Korea Science and Engineering Foundation (KOSEF) grant funded by Ministry of Education, Science and Technology (MEST) (No. 2009-0078928), and by the World Class University (WCU) program at GIST through a grant provided by MEST, Korea (No. R31-20008-000-10026-0).

References

  1. 1.
    Imamura S, Ikebata M, Ito T, Ogita T (1991) Ind Eng Chem Res 30:217CrossRefGoogle Scholar
  2. 2.
    Gulari E, Guldur C, Osuwan S, Srivannavit S (1999) Appl Catal A 182:147CrossRefGoogle Scholar
  3. 3.
    Luo M, Yuan X, Zheng X (1998) Appl Catal A 175:121CrossRefGoogle Scholar
  4. 4.
    Xu J, Wei XW, Song XJ, Lu XJ, Ji CC, Ni YH, Zhao GC (2007) J Mater Sci 42:6972. doi: https://doi.org/10.1007/s10853-006-1307-x CrossRefGoogle Scholar
  5. 5.
    Sato T, Goto S, Tang Q, Shu Y (2008) J Mater Sci 43:2247. doi: https://doi.org/10.1007/s10853-007-1960-8 CrossRefGoogle Scholar
  6. 6.
    You X, Chen F, Zhang J, Anpo M (2005) Catal Lett 102(3–4):247CrossRefGoogle Scholar
  7. 7.
    Song Y, Cui K, Wang L, Chen S (2009) Nanotechnology 20:105501CrossRefGoogle Scholar
  8. 8.
    Zhang J, Miremadi BK, Colbow KJ (1994) Mater Sci Lett 13:1048Google Scholar
  9. 9.
    Tong MS, Dai GR, Wu YD, Gao DS (2000) J Mater Sci Mater Electron 11:661CrossRefGoogle Scholar
  10. 10.
    Yamazoe N (1991) Sens Actuators B 5:7CrossRefGoogle Scholar
  11. 11.
    Lu F, Chen S, Peng S (1998) Sens Actuators B 50:220CrossRefGoogle Scholar
  12. 12.
    Zhang J, Colbow K (1997) Sens Actuators B 40:47CrossRefGoogle Scholar
  13. 13.
    Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) J Mater Sci 43:5115. doi: https://doi.org/10.1007/s10853-008-2745-4 CrossRefGoogle Scholar
  14. 14.
    Badr Y, Mahmoud MA (2006) J Mater Sci 41:3947. doi: https://doi.org/10.1007/s10853-005-5502-y CrossRefGoogle Scholar
  15. 15.
    Alammar T, Mudring AV (2009) J Mater Sci 44:3218. doi: https://doi.org/10.1007/s10853-009-3429-4 CrossRefGoogle Scholar
  16. 16.
    Beyene HT, Chakravadhanula VSK, Hanisch C, Elbahri M, Strunskus T, Zaporojtchenko V, Kienle L, Faupel F (2010) J Mater Sci 45:5865. doi: https://doi.org/10.1007/s10853-010-4663-5 CrossRefGoogle Scholar
  17. 17.
    Douani R, Si-Larbi K, Hadjersi T, Megouda N, Manseri A (2008) Phys Status Solidi (a) 205(2):225CrossRefGoogle Scholar
  18. 18.
    Hadjersi T, Gabouze N (2007) Phys Status Solidi (c) 4(6):2155CrossRefGoogle Scholar
  19. 19.
    Tsujino K, Matsumura M (2007) Electrochim Acta 53:28CrossRefGoogle Scholar
  20. 20.
    Jiu J, Murai K, Kim D, Kim K, Suganuma K (2009) Mater Chem Phys 114:333CrossRefGoogle Scholar
  21. 21.
    Qiu T, Wu XL, Shen JC, Ha PCT, Chu PK (2006) Nanotechnology 17:5769CrossRefGoogle Scholar
  22. 22.
    Pierson JF, Rousselot C (2005) Surf Coat Technol 200(1–4):276CrossRefGoogle Scholar
  23. 23.
    Jimenez JA, Lysenko S, Zhang G, Liu H (2007) J Mater Sci 42:1856. doi: https://doi.org/10.1007/s10853-006-0898-6 CrossRefGoogle Scholar
  24. 24.
    Uznanski P, Bryszewska E (2010) J Mater Sci 45:1547. doi: https://doi.org/10.1007/s10853-009-4122-3 CrossRefGoogle Scholar
  25. 25.
    Biju V, Sugathan N, Vrinda V, Salini SL (2008) J Mater Sci 43:1175. doi: https://doi.org/10.1007/s10853-007-2300-8 CrossRefGoogle Scholar
  26. 26.
    Zhou QF, Xu Z (2004) J Mater Sci 39:2487. doi: https://doi.org/10.1023/B:JMSC.0000020014.82696.85 CrossRefGoogle Scholar
  27. 27.
    Zhang W, Qiao X, Chen J (2007) Mater Sci Eng B 142:1CrossRefGoogle Scholar
  28. 28.
    Fukui K, Nakane M (1995) Sens Actuators B 25:486CrossRefGoogle Scholar
  29. 29.
    Salama T, Ohnishi R, Shido T, Ichikawa MJ (1996) J Catal 162:169CrossRefGoogle Scholar
  30. 30.
    Decher G, Schlenoff JB (eds) (2003) Multilayer thin films. Wiley-VCH, New YorkGoogle Scholar
  31. 31.
    Korotcenkov G, Tolstoy V, Schwank J (2006) Meas Sci Technol 17:1861CrossRefGoogle Scholar
  32. 32.
    Korotcenkov G, Cho BK, Han SD, Tolstoy V (2009) Process Appl Ceram (Serbia) 3(1–2):19CrossRefGoogle Scholar
  33. 33.
    Tolstoy V (2006) Russ Chem Rev 75:161CrossRefGoogle Scholar
  34. 34.
    Tolstoy VP, Murin IV, Reller A (1997) Appl Surf Sci 112:255CrossRefGoogle Scholar
  35. 35.
    Tolstoy VP (1997) Thin Solid Films 307:10CrossRefGoogle Scholar
  36. 36.
    Tsujino K, Matsumura M (2006) Sol Energy Mater Sol Cells 90(10):1527CrossRefGoogle Scholar
  37. 37.
    Frantz P, Granick S (1992) Langmuir 8:1176CrossRefGoogle Scholar
  38. 38.
    Karpov SV, Popov AK, Slabko VV, Shevnina GB (1995) Colloid J 57(2):199Google Scholar
  39. 39.
    Ershov BG, Janata E, Henglein A, Fojtik AJ (1993) Phys Chem 97:4589CrossRefGoogle Scholar
  40. 40.
    Tolstoy VP, Tolstobrov EV, Gulina LB (2002) Vestnik SPbGU (Ser 4) 3(20):120 (in Russian)Google Scholar
  41. 41.
    Janata E, Henglein A, Ershov BG (1994) J Phys Chem 98:10888CrossRefGoogle Scholar
  42. 42.
    Korotcenkov G, Macsanov V, Tolstoy V, Brinzari V, Schwank J, Faglia G (2003) Sens Actuators B 96:602CrossRefGoogle Scholar
  43. 43.
    Witten TA, Sander LM (1981) Phys Rev Lett 47:1400CrossRefGoogle Scholar
  44. 44.
    Meakin P (1983) Phys Rev Lett 51:1119CrossRefGoogle Scholar
  45. 45.
    Ledo A, Martinez F, Lopez-Quintela MA, Rivas J (2007) Physica B 398:273CrossRefGoogle Scholar
  46. 46.
    Guillen-Villafuente O, Garcia G, Anula B, Pastor E, Blanco MC, Lopez-Quintela MA, Hernandez-Creus A, Planes GA (2006) Angew Chem Int Ed 45:4266CrossRefGoogle Scholar
  47. 47.
    Lai X, St Clair TP, Valden M, Goodman DW (1998) Prog Surf Sci 59:25CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Gwangju Institute of Science and TechnologyGwangjuKorea
  3. 3.Mokpo National Maritime UniversityMokpoKorea
  4. 4.Department of Materials Science and EngineeringGISTGwangjuKorea
  5. 5.Department of Nanobio Materials and ElectronicsGISTGwangjuKorea

Personalised recommendations