Advertisement

Journal of Materials Science

, Volume 46, Issue 13, pp 4532–4539 | Cite as

TEM investigation on zirconate formation and chromium poisoning in LSM/YSZ cathode

  • A. Hessler-Wyser
  • Z. Wuillemin
  • J. A. Schuler
  • A. Faes
  • J. Van herle
Article

Abstract

Cell durability is a crucial technological issue for SOFC commercialization, and considerable progress has been made in recent years. A number of degradation pathways have been established, amongst which microstructural changes, poisoning effects and formation of less conductive phases. In this study, transmission electron microscopy was used to observe submicron-scale effects on selected cathode zones of an anode supported cell tested in SOFC stack repeat element configuration. The test has been performed with a dedicated segmented test bench, at 800 °C for 1900 h, which allowed to spatially resolve degradation processes, and therefore to improve their correlation with localized post-test analysis. Evidence is presented of reaction products (mainly SrZrO3) at the LSM/YSZ interfaces as well as of contaminants, in particular Cr, but also Si. A polarized cell segment is compared to an unpolarized one, to assess any influence of cathode polarization.

Keywords

Oxygen Reduction Reaction Solid Oxide Fuel Cell Yttria Stabilize Zirconia Triple Phase Boundary Zirconate Formation 

Notes

Acknowledgements

The authors would like to thank the European Commission (FP6 contract SES6-019875.Flame-SOFC) and the Swiss Federal Office for Energy (OFEN, AccelenT project) for financial support, and Fabienne Bobard from CIME for the TEM lamella extraction by FIB.

References

  1. 1.
    Yokokawa H, Tu H, Iwanschitz B, Mai A (2008) J Power Sour 182(2):400CrossRefGoogle Scholar
  2. 2.
    Adler SB (2004) Chem Rev 104(10):4791CrossRefGoogle Scholar
  3. 3.
    Chen A, Bourne G, Siebein K, Dehoff R, Wachsman E, Jones K (2008) J Am Ceram Soc 91(8):2670CrossRefGoogle Scholar
  4. 4.
    Baukal W, Kuhn W, Kleinschmager H, Rohr FJ (1976) J Power Sour 1(2):203CrossRefGoogle Scholar
  5. 5.
    Yamamoto O, Takeda Y, Kanno R, Noda M (1987) Solid State Ion 22(2–3):241CrossRefGoogle Scholar
  6. 6.
    Mitterdorfer A, Gauckler LJ (1998) Solid State Ion 111(3–4):185CrossRefGoogle Scholar
  7. 7.
    Liu YL, Hagen A, Barfod R, Chen M, Wang HJ, Poulsen FW, Hendriksen PV (2009) Solid State Ion 180(23–25):1298CrossRefGoogle Scholar
  8. 8.
    Chen M, Liu YL, Hagen A, Hendriksen PV, Poulsen FW (2009) Fuel Cell 9(6):833CrossRefGoogle Scholar
  9. 9.
    Badwal SPS, Deller R, Foger K, Ramprakash Y, Zhang JP (1997) Solid State Ion 99(3–4):297CrossRefGoogle Scholar
  10. 10.
    Paulson SC, Birss VI (2004) J Electrochem Soc 151(11):A1954CrossRefGoogle Scholar
  11. 11.
    Menzler NH, Batfalsky P, Blum L, Bram M, Groß SM, Haanappel VAC, Malzbender J, Shemet V, Steinbrech RW, Vinke I (2007) Fuel Cell 7(5):356CrossRefGoogle Scholar
  12. 12.
    Chen X, Zhang L, Jiang SP (2008) J Electrochem Soc 155(11):B1085CrossRefGoogle Scholar
  13. 13.
    Jiang SP, Zhen Y (2008) Solid State Ion 179(27–32):1459CrossRefGoogle Scholar
  14. 14.
    Wang K, Fergus JW (2008) Electrochem Solid-State Lett 11(8):B156CrossRefGoogle Scholar
  15. 15.
    Bentzen JJ, H√∏gh JVT, Barfod R, Hagen A (2009) Fuel Cell 9(6):823CrossRefGoogle Scholar
  16. 16.
    Wang K, Fergus JW (2010) J Electrochem Soc 157(7):B1008CrossRefGoogle Scholar
  17. 17.
    Sun C, Hui R, Roller J (2010) J Solid State Electrochem 14(7):1125CrossRefGoogle Scholar
  18. 18.
    Chen X, Zhen Y, Li J, Jiang SP (2010) Int J Hydrogen Energy 35(6):2477CrossRefGoogle Scholar
  19. 19.
    Liu DJ, Almer J, Cruse T (2010) J Electrochem Soc 157(5):B719CrossRefGoogle Scholar
  20. 20.
    Setoguchi T, Inoue T, Takebe H, Eguchi K, Morinaga K, Arai H (1990) Solid State Ion 37(2–3):217CrossRefGoogle Scholar
  21. 21.
    Stochniol G, Broel S, Naoumidis A, Nickel H (1996) Fresenius’ J Anal Chem 355(5–6):697Google Scholar
  22. 22.
    Cortés-Escobedo CA, Munoz-Saldana J, Bolarin-Miro AM, Sanchez-de Jesus F (2008) J Power Sour 180(1):209CrossRefGoogle Scholar
  23. 23.
    Taniguchi S, Kadowaki M, Kawamura H, Yasuo T, Akiyama Y, Miyake Y, Saitoh T (1995) J Power Sour 55(1):73CrossRefGoogle Scholar
  24. 24.
    Schuler JA, Wuillemin Z, Hessler-Wyser A, Van herle J (2009) ECS Trans 25(2):2845CrossRefGoogle Scholar
  25. 25.
    Yokokawa H, Horita T, Sakai N, Yamaji K, Brito ME, Xiong YP, Kishimoto H (2006) Solid State Ion 177(35–36):3193CrossRefGoogle Scholar
  26. 26.
    Konysheva E, Mertens J, Penkalla H, Singheiser L, Hilpert K (2007) J Electrochem Soc 154(12):B1252CrossRefGoogle Scholar
  27. 27.
    Jiang SP, Zhang S, Zhen YD (2006) J Electrochem Soc 153(1):A127CrossRefGoogle Scholar
  28. 28.
    Salvador PA, Wang S, Wilson L, Krumpelt M, Cruse TA (2007) Office of fossible energy fuel cell programGoogle Scholar
  29. 29.
    Wuillemin Z, Nakajo A, Müller A, Schuler JA, Diethelm S, Van herle J, Favrat D (2009) ECS Trans 25(2):457CrossRefGoogle Scholar
  30. 30.
    Wuillemin Z (2009). PhD Thesis n° 4525, Ecole Polytechnique Fédérale de Lausanne, LausanneGoogle Scholar
  31. 31.
    Schuler JA, Tanasini P, Hessler-Wyser A, Van herle J (2010) Scripta Mater 63(8):895CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. Hessler-Wyser
    • 1
  • Z. Wuillemin
    • 2
  • J. A. Schuler
    • 1
    • 2
  • A. Faes
    • 1
    • 2
  • J. Van herle
    • 2
  1. 1.Interdisciplinary Centre for Electron Microscopy (CIME)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Industrial Energy Systems Laboratory (LENI)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations