Advertisement

Journal of Materials Science

, Volume 46, Issue 13, pp 4517–4523 | Cite as

Processing and electromechanical properties of lanthanum-doped Pb(Zr,Ti)O3 extruded piezoelectric fibres

  • F. Clemens
  • T. Comyn
  • J. Heiber
  • F. Nobre
  • A. C. E. Dent
  • C. R. Bowen
Article

Abstract

This article describes the processing and characterisation of lanthanum-doped lead zirconate titanate (PLZT)-based ferroelectric fibres for composite transducer applications. X-ray diffraction of the extruded and sintered fibres indicated some lead loss during sintering; however, the fibres exhibited low porosity (1.54%), high maximum piezoelectric strain (4041 ppm) and relatively low coercive field (0.77 kV/mm). The low coercive field of the lanthanum-doped fibres may be advantageous in terms of facilitating polarization of the fibres in composite architectures.

Keywords

Coercive Field Electromechanical Property Interdigitated Electrode Fibre Cross Section Lead Loss 

Notes

Acknowledgements

A.C.E. Dent would like to acknowledge support from Great Western Research (GWR).

References

  1. 1.
    Tressler JF, Alkoy S, Doganand A, Newnham RE (1999) Composites A 30:477CrossRefGoogle Scholar
  2. 2.
    Janas V, Safari A (1995) J Am Ceram Soc 78:2945CrossRefGoogle Scholar
  3. 3.
    Harvey G, Gachagan A, Mackersie JW, Mccunnie T, Banks R (2009) IEEE Trans Ultrason Ferroelectr Freq Control 56:1999CrossRefGoogle Scholar
  4. 4.
    Bowen CR, Bradley LR, Almond DP, Wilcox PD (2008) Ultrasonics 48:367CrossRefGoogle Scholar
  5. 5.
    Yoshikawa S, Selvaraj U, Brooks KG, Kurtz SK (1992) In: Lui M (ed) Proceedings of the 8th IEEE International Symposium on applications of ferroelectrics, IEEE, New York, p 269Google Scholar
  6. 6.
    Schultz MR, Hyer MW, Williams RB, Wilkie WK, Inman DJ (2006) Compos Sci Technol 66:2442CrossRefGoogle Scholar
  7. 7.
    Bent AA, Hagood NW (1997) J Intell Mater Syst Struct 8:903CrossRefGoogle Scholar
  8. 8.
    Nelson LJ (2002) Mater Sci Tech 18:1245CrossRefGoogle Scholar
  9. 9.
    Heiber J, Clemens F, Graule T, Hulsenberg D (2005) Adv Eng Mater 7:404CrossRefGoogle Scholar
  10. 10.
    Bowen CR, Stevens R, Nelson LJ, Dent AC, Dolman G, Su B, Button TW, Cain MG, Stewart M (2006) Smart Mater Struct 15:295CrossRefGoogle Scholar
  11. 11.
    Cass RB (1991) Am Ceram Soc Bull 70:424Google Scholar
  12. 12.
    Meister F, Vorbach D, Niemz F, Schulze T (2003) Materialwiss Werkstofftech 34(3):262CrossRefGoogle Scholar
  13. 13.
    Li K, Li J, Cao D, Li J-H (2008) J Compos Mater 42:1125CrossRefGoogle Scholar
  14. 14.
    Ting SM, Janas VF, Safari A (1996) J Am Ceram Soc 79:1689CrossRefGoogle Scholar
  15. 15.
    Beckert W, Kreher W, Braue W, Antre M (2001) J Eur Ceram Soc 21:1445CrossRefGoogle Scholar
  16. 16.
    Haertling GH, Land CE (1971) J Am Ceram Soc 54(1):1CrossRefGoogle Scholar
  17. 17.
    Härdtl KH (1976) Ferroelectrics 12(1–4):9CrossRefGoogle Scholar
  18. 18.
    Haertling GH (1999) J Am Ceram Soc 82:797CrossRefGoogle Scholar
  19. 19.
    Meyer RJ, Shrout TR, Yoshikawa S (1997) In: ISAF ‘96—Proceedings of the 10th IEEE International Symposium on Applications of Ferroelectrics, vol 1 and 2. East Brunswick, p 547Google Scholar
  20. 20.
    Kitaoka K, Kozuka H, Yoko T (1998) J Am Ceram Soc 81(5):1189CrossRefGoogle Scholar
  21. 21.
    Chong SL, Venkatesh R, Ramanan SR (2005) Integr Ferroelectr 70:19CrossRefGoogle Scholar
  22. 22.
    Yu G, Wang X, Zhu L, Xu D, Ren Q, Zhang G, Liu X, Sun Z, Fan H (2008) Solid State Sci 10:859CrossRefGoogle Scholar
  23. 23.
    Heiber J, Clemens F, Helbig U, De Meuron A, Soltmann CH, Graule T, Hulsenberg D (2007) Acta Mater 55:6499CrossRefGoogle Scholar
  24. 24.
    Chinn RE (2002) In: Preparation and analysis of ceramic microstructures. ASM International, Materials ParkGoogle Scholar
  25. 25.
    Belloli A, Heiber J, Clemems F, Ermanni P (2009) J Intell Mater Syst Struct 20:355CrossRefGoogle Scholar
  26. 26.
    Nelson LJ, Bowen CR, Stevens R, Cain M, Stewart M (2003) In: Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), vol 5053. Bellingham, p 544Google Scholar
  27. 27.
    Dent AC, Nelson LJ, Bowen CR, Stevens R, Cain M, Stewart M (2005) J Eur Ceram Soc 25:2387CrossRefGoogle Scholar
  28. 28.
    Jiang QY, Subbarao EC, Cross LE (1994) J Appl Phys 75:7433CrossRefGoogle Scholar
  29. 29.
    Li K, Li JH, Li JC, Chan HLW (2004) J Inorg Mater 19:361Google Scholar
  30. 30.
    Zhu ZL, Tang DY, Zhang XH, Qiao YJ (2010) Adv Mater Res 105–106:355CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. Clemens
    • 1
  • T. Comyn
    • 2
  • J. Heiber
    • 1
  • F. Nobre
    • 1
  • A. C. E. Dent
    • 3
  • C. R. Bowen
    • 3
  1. 1.Laboratory for High Performance CeramicsEmpa, Swiss Federal Laboratories for Materials Science and TechnologyDuebendorfSwitzerland
  2. 2.Institute for Materials ResearchUniversity of LeedsLeedsUK
  3. 3.Department of Mechanical Engineering, Materials Research CentreUniversity of BathBathUK

Personalised recommendations