Advertisement

Journal of Materials Science

, Volume 46, Issue 13, pp 4479–4486 | Cite as

Effects of γ-ray irradiation and thermal annealing on structural, optical and electrical properties of vacuum deposited vanadyl 2,3-naphthalocyanine thin films

  • Nisha S. Panicker
  • C. S. Menon
Article

Abstract

Vacuum deposited vanadyl naphthalocyanine (VONc) crystalline thin films were produced. The films showed a completely different structural and growth pattern on thermal annealing and γ-ray irradiation. The XRD spectra revealed polycrystalline nature for both annealed and γ-ray irradiated films. Raman spectra observes that the γ-irradiated films had a higher disorder producing broad and diffuse peaks in comparison to its annealed samples. In the absorption spectra, the γ-irradiated films shows a broad Q-band with a shift of 50 nm towards the IR region enabling VONc to be used in a lot of applications using the commercially available semiconductor NIR lasers. Films on 97.9 krad γ-ray irradiation showed some interesting properties with a better conductivity compared to either it’s higher γ-ray irradiated counterpart (195.8 krad) or the annealed films. Also the activation energy values, which is the minimum amount of energy required to liberate charge carriers from traps or to ionize levels within the band gap, was found to be lowered to half of its value for the films irradiated at 97.9 krad promising its performance in optical data recording, photo-sensitizer in photodynamic therapy, etc.

Keywords

Annealed Sample Annealed Film Thermal Activation Energy Conductivity Graph Naphthalocyanine 

References

  1. 1.
    Arshak A, Zleetni S, Arshak K (2002) Sensors 2:174CrossRefGoogle Scholar
  2. 2.
    Tomiyama T, Watanabe I, Kuwano A, Habiro M, Takane N, Yamada M (1995) Appl Opt 34:8201CrossRefGoogle Scholar
  3. 3.
    Kivits P, de Bont R, van der Veen J (1981) Appl Phys A 26:101CrossRefGoogle Scholar
  4. 4.
    Silva EAB, Borin JF, Nicolucci P, Graeff CFO, Ghilardi NT, Bianchi RF (2005) Appl Phys Lett 86:131902CrossRefGoogle Scholar
  5. 5.
    Wöhrle D, Meissner D (1991) Adv Mater 3:129CrossRefGoogle Scholar
  6. 6.
    Liljeroth P, Repp J, Meyer G (2007) Science 317:1203CrossRefGoogle Scholar
  7. 7.
    Ueno M, Yuasa T (1990) Infrared absorbing dyes. Plenum Press, New YorkGoogle Scholar
  8. 8.
    Gaffo L, Cordeiro MR, Freitas AR, Moreira WC, Girotto EM, Zucolotto V (2010) J Mater Sci 45:1366. doi: https://doi.org/10.1007/s10853-009-4094-3 CrossRefGoogle Scholar
  9. 9.
    Yaghmour SJ (2009) J Alloys Compd 486:284CrossRefGoogle Scholar
  10. 10.
    El-Batal FH (2008) J Mater Sci 43:1070. doi: https://doi.org/10.1007/s10853-007-2254-x CrossRefGoogle Scholar
  11. 11.
    Maissel LI, Glang R (1985) Handbook of thin film technology. McGraw Hill, New YorkGoogle Scholar
  12. 12.
    Yanagi H, Ashida M, Elbe J, Wohrle D (1990) J Phys Chem 94:7056CrossRefGoogle Scholar
  13. 13.
    Tai S, Hayashi N (1991) J Chem Soc Perkins Trans 2:1275CrossRefGoogle Scholar
  14. 14.
    Manivannan A, Nagahara LA, Hashimoto K, Fujishima A, Yanagi H, Kouzeki T, Ashida M (1993) Langmuir 9:771CrossRefGoogle Scholar
  15. 15.
    Jiang J, Arnold DP, Yu H (2000) Polyhedron 19:1381CrossRefGoogle Scholar
  16. 16.
    Carrasco EAF, Campos-Vallette M, Saavedra MS, Diaz GF, Clavijo RE, Garcia-Ramos JV, Sanchez-Cortes S (2001) Vib Spectrosc 26:201CrossRefGoogle Scholar
  17. 17.
    Kadish KM, Smith KM, Guilard R (2003) The porphyrin handbook: vol 16 phthalocyanines: spectroscopic and electrochemical characterization. Academic Press, CaliforniaGoogle Scholar
  18. 18.
    El-Nahassa MM, Abd-El-Rahmana KF, Al-Ghamdib AA, Asiri AM (2004) Physica B 344:398CrossRefGoogle Scholar
  19. 19.
    Tai S, Hayashi N (1991) J Chem Soc Perkin Trans 2:1275CrossRefGoogle Scholar
  20. 20.
    Day P (2010) Physica B 405:S6CrossRefGoogle Scholar
  21. 21.
    Minh LQ, Chot T, Dinh NN, Xuan NN, Bingh NT, Phuoc DM (1987) Phys Stat Solidi A 101:K143CrossRefGoogle Scholar
  22. 22.
    Chen Y, Hanack M, Blau WJ, Dini D, Liu Y, Lin Y, Bai J (2006) J Mater Sci 41:2169. doi: https://doi.org/10.1007/s10853-006-5552-9 CrossRefGoogle Scholar
  23. 23.
    Collins RA, Krier A, Abass AK (1993) Thin Solid Films 229:113CrossRefGoogle Scholar
  24. 24.
    Yakuphanoglu F, Arslan M, Küçükislamoğlu M, Zengin M (2005) Sol Energy 79:96CrossRefGoogle Scholar
  25. 25.
    Urbach F (1953) Phys Rev 92:1324CrossRefGoogle Scholar
  26. 26.
    Skettrup T (1978) Phys Rev B 18:2622CrossRefGoogle Scholar
  27. 27.
    Schön JH, Kloc Ch, Batlogg B (2001) Phys Rev Lett 86:3843CrossRefGoogle Scholar
  28. 28.
    Belghachi A, Collins RA (1988) J Phys D 21:1647CrossRefGoogle Scholar
  29. 29.
    Gould RD (1996) Coord Chem Rev 156:237CrossRefGoogle Scholar
  30. 30.
    Vidadi YA, Rozenshtein LD, Chistyakov EA (1969) Sov Phys Sol Stat 11:219Google Scholar
  31. 31.
    Anderson PW (1985) Phys Rev 109:1492CrossRefGoogle Scholar
  32. 32.
    Mott NF (1967) Adv Phys 16:49CrossRefGoogle Scholar
  33. 33.
    Cohen NH, Fritche H, Ovshinsky SR (1969) Phys Rev Lett 22:1065CrossRefGoogle Scholar
  34. 34.
    Mott NF, Davis EA (1970) Phil Mag 22:903CrossRefGoogle Scholar
  35. 35.
    Thomas J, Pillai VNS, Nampoori VPN, Vallabhan CPG (1999) J Mater Sci Lett 18:963CrossRefGoogle Scholar
  36. 36.
    El-Nahass MM, Farag AAM, Atta AA (2009) Synth Met 159:589CrossRefGoogle Scholar
  37. 37.
    Ahmed MA, Summan AM, Mousa MA (1992) J Mater Sci-Mater Electron 2:1CrossRefGoogle Scholar
  38. 38.
    Gaffar MA, Hussien AG (2001) J Phys Chem Solids 62:2011CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Pure and Applied PhysicsMahatma Gandhi UniversityKottayamIndia

Personalised recommendations